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Computerized Analysis of MR and Ultrasound Images of Breast Lesions

Maryellen L. Giger, Ph.D.

INTRODUCTION

The main hypothesis to be tested is that, computerized analysis of breast ultrasound and
MR images should yield new methods for distinguishing between malignant and benign lesions
and thus, reduce the number of unnecessary biopsies. In addition, even higher performance is
expected when a combination of features from mammographic, MR, and ultrasound images is
used as an aid to radiologists in the task of distinguishing between malignant and benign
lesions. The main goal of the proposed research is to develop noninvasive, computerized
methods for analyzing ultrasound and MR (magnetic resonance) images of breast lesions to aid
radiologists in their workup of suspect lesions. The specific objectives of the research to be
addressed are: 1. Create a database of ultrasound and MR images including malignant lesions,
benign solid masses, and complex cysts; 2. Develop noninvasive, computerized methods for
characterizing the lesions to yield an output related to the probability of malignancy; and 3.
Evaluate the efficacies of the new image analysis methods in the task of distinguishing between
malignant and benign lesions. It is expected that the results from this research will aid
radiologists in determining the likelihood of malignancy and in reducing the number of benign
cases sent to biopsy. Computerized image analysis techniques that can objectively and reliably
classify lesions based upon reported sonographic and/or MR characteristics of benign and
malignant masses, especially if combined with their mammographic features, could significantly
improve the specificity of breast imaging and the evaluation of breast masses. The proposed
work is novel in that computer-aided diagnosis techniques applied to gray-scale sonographic
images has not yet been reported. In addition, computerized analysis of MR images of the
breast has mainly been limited to only temporal analysis using contrast media.

BODY

Breast cancer is a leading cause of death in women, causing an estimated 46,000 deaths per
year (1). Mammography is the most effective method for the early detection of breast cancer,
and it has been shown that periodic screening of asymptomatic women does reduce mortality
(2-4). Many breast cancers are detected and referred for surgical biopsy on the basis of a
radiographically detected mass lesion or cluster of microcalcifications. Although general rules
for the differentiation between benign and malignant mammographically identified breast
lesions exist (5, 6), considerable misclassification of lesions occurs with the current methods.
On average, less than 30% of masses referred for surgical breast biopsy are actually malignant
(7).

Breast sonography is used as an important adjunct to diagnostic mammography and is
typically performed to evaluate palpable and mammographically identified masses in order to
determine their cystic vs. solid natures. The accuracy of ultrasound has been reported to be 96-
100% in the diagnosis of simple benign cysts (8). Masses so characterized do not require
further evaluation; however, 75% of masses prove to be indeterminate or solid on sonography
and are candidates for further intervention (9). With the advent of modem high-frequency
transducers that have improved spatial and contrast resolution, a number of sonographic
features have emerged as potential indicators of malignancy, while other features are typical for
benign masses (10,11). Benign features include hyperechogenicity, ellipsoid shape, mild
lobulation, and a thin, echogenic pseudocapsule. Malignant features include spiculation, angular
margins, marked hypoechogenicity, posterior acoustic shadowing, and a depth:width ratio
greater than 0.8. Recently, Stavros, et al., used these and other features to characterize masses
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as benign, indeterminate, and malignant (12). Their classification scheme had a sensitivity of
98.4% and a negative predictive value of 99.5%. However, the sonographic evaluation
described by these investigators is much more extensive and complex than is usually performed
at most breast imaging centers.

Breast MR imaging as an adjunct to mammography and sonography reveals breast cancer
with a higher sensitivity than do mammography and sonography only (13). However, using all
three methods in the human interpretation process yielded a lower specificity. It also has been
shown that temporal analysis from dynamic MR correlates with intensity of fibrosis in
fibroadenomas (14). Some computerized analyses of spatial features are being performed.
Adams et al. achieved a separation between malignant and benign lesions using a statistical
analysis, however, their database consisted of only 16 cases (15).

Computerized image analysis techniques that can objectively and reliably classify lesions
based upon reported sonographic and/or MR characteristics of benign and malignant masses,
especially if combined with their mammographic features, could significantly improve the
specificity of breast imaging and the evaluation of breast masses. Computer-aided techniques
have been applied to the color Doppler evaluation of breast masses with promising results (16).
However, color Doppler imaging is a technique which focuses only upon the vascularity of
lesions. Since not all sonographically visible cancers have demonstrable neovascularity, this
technique is inherently somewhat limited. On the other hand, computer-aided diagnosis
techniques applied to gray-scale sonographic images has not yet been reported. In addition,
computerized analysis of MR images of the breast has mainly been limited to only temporal
analysis using contrast media.

Comprehensive summaries of investigations in the field of mammography CAD have been
published by the co-P.I. (17, 18). In the 1960s and 70s, several investigators attempted to
analyze mammographic abnormalities with computers. These previous studies demonstrated
the potential capability of using a computer in the detection of mammographic abnormalities.
Gale et al. (19) and Getty et al. (20) are both developing computer-based classifiers, which take
as input diagnostically-relevant features obtained from radiologists' readings of breast images.
Getty et al. found that with the aid of the classifier, community radiologists performed as well as
unaided expert mammographers in making benign-malignant decisions. Swett et al. (21) are
developing an expert system to provide visual and cognitive feedback to the radiologist using a
critiquing approach combined with an expert system. At the University of Chicago, we have
shown that the computerized analysis of mass lesions (22) and clustered microcalcifications
(23) on digitized mammograms yields performances similar to an expert mammographer and
significantly better than average radiologists in the task of distinguishing between malignant and
benign lesions.

The proposed work is novel in that computer-aided diagnosis techniques have not yet
been applied to gray-scale breast ultrasound and/or MR images. In addition, future research
involving the use computers to merge features from mammographic, MR, and ultrasound
images, as an aid to radiologists, has not yet been investigated.

The main goal of the proposed research is to develop noninvasive, computerized methods
for analyzing ultrasound and MR (magnetic resonance) images of breast lesions to aid
radiologists in their workup of suspect lesions. The specific objectives of the research to be
addressed are: 1. Create a database of ultrasound and MR images including malignant lesions,
benign solid masses, and complex cysts; 2. Develop noninvasive, computerized methods for
characterizing the lesions to yield an output related to the probability of malignancy; and 3.
Evaluate the efficacies of the new image analysis methods in the task of distinguishing between
malignant and benign lesions. It is expected that the results from this research will aid
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radiologists in determining the likelihood of malignancy and in reducing the number of benign

cases sent to biopsy.

1. Establishment of a database of ultrasound and MR images

Methods
Approximately 500 sonographically demonstrated lesions will be collected which will

include aspirated complex cysts, and biopsied solid benign and malignant masses. The
database of these collected cases will include the MR, sonographic, and mammographic images
as well as the lesions' ultimate dispositions and diagnoses. (Note that funding already exists
for the computerized analysis of the mammographic lesions). Based upon our current case
load, we estimate that approximately 30% of the lesions will be complex cysts which required
aspiration to prove their cystic nature, 40% will be benign solid masses, and 30% will be
cancers. Palpable and mammographically identified masses are evaluated sonographically by
representative images in orthogonal planes, obtaining measurements in these same planes, and
most masses are also evaluated with color Doppler imaging. Although the preliminary studies
on ultrasound images involved the digitization of ultrasound films, the ultrasound images in this
new database will be obtained directly from an ATL ultrasound machine, which produces digital
image data. In addition, approximately 50 cases of MR images of the breast will be collected
with a Ti-weighted sequence, using coronal slices. After injection of GD contrast, 4 to 6 scans
of both breasts will be obtained at 90 sec. time intervals. Biospy results will be used to
determine truth regarding malignancy.

Results to Date
We currently have retrospectively collected over 400 ultrasound cases of mass lesions, all

that had gone on to either biopsy or cyst aspiration. The images are obtained from University
of Chicago and Northwestern University. The images are transferred in digital format from the
ATL unit. The digital images within the ATL unit are obtained by screen capture. For each
case we have at least two views of the lesion. We are currently collecting the corresponding
mammograms for the study. We have digitized over 100 cases with 2 to 7 films per case. We
expect to finish the database by the end of summer 2001. Approximately 150 cases will not be
digitized due to the case either having a non-mammographically seen lesion or a lesion which
caused a call back for ultrasound but did not correspond to the lesion interpreted on the
ultrasound.

We currently have retrospectively collected 35 coronal MR cases from University of
Muenster, 362 saggital MR cases of the breast from University of Pennsylvania, and 90 cases
from the Unviersity of Berlin (which follow a protocol similar to University of Muenster).
These are all volume datasets. Of the 362 saggital cases, 253 are focal (192 malignant, 51
benign, 10 normal), 74 are diffuse lesions (48 malignant and 25 benign), 10 are ductal (9
malignant and 1 benign), and 25 showed no enhancement (3 malignant, 19 benign, 3 normal).

2. Development of computerized method for the classification of lesions
The computerized method will include the image analysis of the texture within the lesion,

the analysis of the margin of the lesion, and a comparison of the lesion with its surrounding
tissue. Computerized analysis of the texture pattern in the lesion will be based on various
texture analysis methods we have been investigating in our laboratory including Fourier spectra
analysis and artificial neural networks. We note that it is extremely important to understand the
relationship between the mathematical texture measures and the physical nature of the breast
parenchyma.

The computerized analysis of the margin characteristics (edge definition) will involve
feature extraction using radial edge-gradient analysis. We have done similar analysis on
radiographic masses in determining their margin characteristics (spiculated and ill defined) (22).
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Two promising measures are the FWHM and the average radial gradient which correspond to
the degree of spiculation and how ill-defined is the margin, respectively. From the computer-
extracted margin, we will also determine the shape and irregularity of each lesion.

Specifically for the ultrasound images, comparison of the "density" and the texture patterns
of the lesion with neighboring regions, including those deep to the lesion, will be performed in
order to quantify its echogenicity and the amount of any posterior acoustic shadowing or
enhancement. This will be performed by comparing feature values "below" the lesion to those
obtained along side and below the lesion.

Temporal features will be determined from analyzing the MR image data over time. The
contrast meduim uptake curve will be analyzed at various spatial locations within and around the
suspect lesion. Temporal operators include the maximum uptake, mean gradient of uptake, and
rms variation. Both two-dimensional and three-dimensional features will be calculated, e.g.,
irregularity and margin gradient characteristics. In addition, the spatial features will be
investigated as a function of time.

We plan to use artificial neural networks along with other measures of the mass in question
to obtain an estimate of the likelihood of malignancy. We will investigate merging the
ultrasound image features and MR features with those from mammographic images of the same
lesion. We already have funding support for the investigation involving radiographic imaging
of masses.

The various features will serve as input data and will be supplied to the input units of the
artificial neural network. Prior to input to the ANN, the features will be normalized between 0
and 1. The output data from the neural network are then obtained through successive nonlinear
calculations in the hidden and output layers. The calculation at each unit in a layer includes a
weighted summation of all entry numbers, an addition of a certain offset number, and a
conversion into a number ranging from 0 to 1 using a sigmoid-shape function such as a
logistic function. The neural network will be trained by a back-propagation algorithm using
pairs of training input data and desired output data. The desired output data will be initially 1 if
features of a malignant lesion are input and 0 otherwise. Once trained, the neural network will
accept features of a lesion and will output a value that will be related to a likelihood of
malignancy. Feature selection will be performed by analyzing the average and standard
deviation of the various features for both malignant and benign lesions. Az values will be
calculated for each feature as well as for the output of the ANNs. In addition, genetic
algorithms, which we have used, in a pilot study, for optimizing feature selection for the task of
distinguishing true-positive and false-positive mass detections, will also be used.

Results to Date: Ultrasound
We are developing computerized analyses of breast lesions in ultrasound images to aid in

the discrimination between malignant and benign lesions (24). We extracted and calculated
features related to lesion margin, shape, homogeneity (texture) and the nature of the posterior
acoustic attenuation pattern in ultrasound images of the breast. Our database contained 184
digitized ultrasound images from 58 patients with 78 lesions. Benign lesions were confirmed
by biopsy, cyst aspiration, or image interpretation alone, while malignant lesions were confirmed
by biopsy. ROC analysis was used to study the performance of the various individual features
and the output from linear discriminant analysis in distinguishing benign from malignant
lesions. From ROC analysis, the feature characterizing the margin yielded Az values of 0.85
and 0.75, in the task of distinguishing between benign and malignant lesions in the entire
database and in an equivocal database, respectively. The "equivocal" database contained lesions
that had been proven to be benign or malignant by either cyst aspiration or biopsy. Linear
discriminant analysis round-robin runs yielded Az values of 0.94 and 0.87 in the task of
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distinguishing between benign and malignant lesions in the entire database and the equivocal
database, respectively.

We are currently evaluating the method on a database of ultrasound images from
Northwestern University. The database of over 400 cases includes pathology truth as well as
radiologists BI-RADS ratings with all cases having gone to biopsy or aspiration. Our previous
method required radiologists' manually-drawn lesion contours as input to the computerized
classification scheme. The current method, however, involves automatic segmentation of the
lesion contour from the ultrasound image data. Of the 410 cases, 126 were complex cysts, 186
were benign solid lesions, and 98 were malignant lesions. Features related to lesion margin,
shape, echogenicity (texture) and posterior acoustic attenuation were automatically extracted.
To evaluate the performance of the computer alone, the entire database was divided into training
and testing groups. The independent linear discriminant analysis yielded a validation result of
an Az of 0.89 and a partial Az value at 0.90 sensitivity of 0.52. In addition, in order to evaluate
the performance of the computer relative to that of the radiologists, 125 cases were assessed for
suspicion by an expert sonographer. Round-robin analysis in the task of distinguishing
malignant from benign lesions yielded Az values of 0.88 and 0.92 for the computer and the
radiologist, respectively.

We have submitted two manuscripts to Medical Physics -- one on the computerized
segmentation method and one on the computer-extracted ultrasound features. These preprints
are in the appendix.

Results to Date: MRI
We are developing computerized analyses of breast lesions in MR images to aid in the

discrimination between malignant and benign lesions (25). Dynamic MR data was obtained
from 27 patients by a TI-weighted sequence, using 64 coronal slices, a typical slice thickness of
2 mm, and a pixel size of 1.25 mm. After injection of GDTPA contrast, 4 to 6 scans of both
breasts were obtained at 90 sec. time intervals. The database contained 13 benign and 15
malignant lesions. Our computerized classification method includes temporal features of
normalized speed and inhomogeneity of uptake, and spatial features of margin descriptors such
as circularity and irregularity. Our results indicate that classification based on temporal and
spatial features combined can yield a positive predictive value of 94%, and has the potential to
reduce the number of unnecessary biopsies by approximately 92%.

We have developed a new method for automatically extracting the lesion from the 3D
image set of the breast. Our previous results were based on the use of manually-drawn lesion
contours in the various slices of the MR data. The new segmentation method involves the use
of an encompassing shell to limit the region for local thresholding. ROC analysis yielded Az
values of 0.90 when the manual segmentation was used in the classification and 0.93 when
automatic segmentation was included.

We are currently evaluating the method on 362 cases from the University of Pennsylvannia
as wellas the cases from the University of Muenster and University of Berlin. The UPENN
images differ from our initial database in that these cases are saggital and had fat suppression
applied. Also, the UPENN dataset uses fat suppression and thus a modification in the
automatic lesion extraction method was made. For the evaluation, we developed a new interface
for the human delineation of the lesion margin in 3D to serve as "margin truth". While
outlining the margin in a slice, the observer can see their outline in other views. One
performance of index is an overlap calculation in which, in terms of voxels, we calculate the
intersection of the human and computer margins divided by the union. We now have this
margin truth for roughly 200 cases and we are now running the overlap comparison to
determine if the computer outlines similar to the human. We will also do the comparison in
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terms of the performance of the features extracted from the lesion in the task of distinguishing
malignant and benign lesions.

3. Evaluation in the task of distinguishing between malignant and benign lesions.
In order to test the capability of the neural networks to learn the features of malignant and

benign lesions, a consistency test will be conducted in which the network is first trained with all
the cases in the database and then tested with the same cases used in the training. A consistency
test indicates that the network is able to "remember" all of the input types that were used for
training. However, it is more important to test if the network can learn a generalized set of
inputs from the examples provided and if it can then make a correct prediction for new cases
that were not included in the training. Thus, a round-robin method will be employed to test the
network's generalizing ability. With the jack-knife method, all but one of the cases are selected
randomly from the database for training of the network, and the remaining one case is used for
testing the network. The output values are then compared to the "truth" data. Various
combinations of training and testing pairs will be selected by using a random number generator
and the results will be analyzed using ROC analysis. ROC curves will be obtained by fitting
continuous output data from the neural networks using the LABROC4 program (26). The area
under the ROC curve (Az) will be used as an indicator of performance. In order to determine
the structure of the neural network as well as the necessary number of training iterations, we will
analyze the consistency results and the round-robin results in terms of Az as a function of
number of iterations, momentum, learning rate and number of hidden units. We use Az as an
indicator of performance since it includes information on both the sensitivity and specificity of
the measures.

The proposed techniques are expected to yield measures about the likelihood of
malignancy. Receiver Operating Characteristic (ROC) analysis (26) will be employed in
evaluating the performance of the measures. We have used ROC analysis successfully in both
evaluting the performance of human observers as well as that of computerized schemes. The
task in which the image features will be evaluated will be in their ability to determine an estimate
of the likelihood of malignancy. The decision variable for the ROC analysis will be each
individual feature as well as combined measures within a modality and combined measures
from multiple modalities (x-ray, MR, and ultrasound).

We expect that 500 lesions and their ultrasound images will be available for testing. Note
that here the measure of performance will be the Az value (from ROC analysis) obtained in the
task of distinguishing between malignant and benign lesions. To obtain an estimate of the
number of lesions needed for adequate statistical power in testing differences in Az values, we
assume only a correlation of 0.60 between the estimates of Az that are found for our current
method involving the computerized analysis of mammographic lesions (Az=0.87) and that for
the expected improved method (Az=0.92). With Npos patients who have a malignant lesion and
Nneg patients who have a benign lesion, the standard error of the resulting estimate can be
approximated (Eqn. 9 in Ref. 27) by the expression { [2Az-(1-f)(1-Az)](1-Az)/3Npos] } 1/2,
where f represents the ratio Npos/Nneg. Thus, with f = 1, the statistical power at a critical
significance level of a = 0.05 for 500 mass lesions is 94%.

Results to Date
The results from the evaluation of the methods is described in the preliminary studies

described above. We have submitted two manuscripts to Medical Physics -- one on the
computerized segmentation method and one on the computer-extracted ultrasound features.
These preprints are in the appendix. We also presented preliminary results on the combination
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of mammographic and sonographic features on the common database as SPIE Medical Imaging
2001.

KEY RESEARCH ACCOMPLISHMENTS

* Development of an automatic method for segmenting lesions on ultrasound.

e Development of robust features for characterizing lesions in ultrasound images of the

breast.

e Development of robust features for characterizing lesions in MRI images of the breast.

• Investigation and development of methods for segmentation in 2D for ultrasound images

and in 2D and 3D for MRI image datasets.

* Preliminary investigation of merging mammographic and sonographic features of lesions

on a common database.

REPORTABLE OUTCOMES

1. Gilhuijs KGA, Giger ML, Bick U: Automated analysis of breast lesions in three
dimensions using dynamic magnetic resonance imaging. Medical Physics 25:1647-
1654, 1998.

2. Giger ML, Al-Hallaq H, Huo A, Moran C, Wolverton DE, Chan CW, Zhong W:
Computerized analysis of lesions in ultrasound images of the breast. Academic
Radiology 6: 665-674, 1999. (also being reprinted in the Yearbook of Radiology)

3. Horsch K, Giger ML, Venta LA, Huo Z, Vyborny CJ; Computer-aided diagnosis of
breast lesions on ultrasound. Proceedings, International Workshop on Digital
Mammography. Toronto, Canada, June, 2000.

4. Horsch K, Giger ML, Venta LA, Vyborny CJ: Automatic segmentation of breast
lesions on ultrasound. Medical Physics (in press).

5. Horsch K, Giger ML, Venta LA, Vyborny CJ: Computerized diagnosis of breast
lesions on ultrasound. Medical Physics (accepted with revision).

6. Giger ML, Huo Z, Horsch K, Hendrick E, Venta L, Vyborny CJ: Computer-aided
diagnosis of lesions on multimodality images of the breast. Proc. SPIE 2001 (in press).

CONCLUSIONS
We have made great strides in the development of methods for the claslsification of lesions

in ultrasound and MR images of the breast. We are retrospectively collecting large datasets of
ultrasound and MR cases with solid pathology truth and radiologists' ratings. These cases
include malignant lesions, benign solid masses, and complex cysts. We are developing
noninvasive, computerized methods for characterizing the lesions to yield an output related to
the probability of malignancy and plan to evaluate the efficacies of the new image analysis
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methods in the task of distinguishing between malignant and benign lesions. It is expected that
the results from this research will aid radiologists in determining the likelihood of malignancy
and in reducing the number of benign cases sent to biopsy.
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Abstract

We present a computer-aided diagnosis (CAD) method for breast lesions on ultrasound

that is based on the automatic segmentation of lesions and the automatic extraction of

four features related to the lesion shape, margin, texture and posterior acoustic behavior.

Using a database of 400 cases (94 malignant lesions, 124 complex cysts and 182 benign solid

lesions), we investigate the marginal benefit of each feature in our CAD method and the

performance of our CAD method in distinguishing malignant lesions from various classes of

benign lesions. Finally, independent validation is performed on our CAD method. Eleven

independent trials yielded an average A, value of 0.87 in the task of distinguishing malignant

from benign lesions.

Keywords: Breast sonography, computer-aided diagnosis.
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1 Introduction

Although ultrasound is currently used to diagnose simple cysts with a reported accuracy

of 96-100% [1], it is not currently used to differentiate solid lesions by most radiologists.

Biopsy or aspiration is the usual management for those lesions that are not diagnosed as

clearly cystic during the ultrasound exam. In general, for masses undergoing surgical biospy,

only 10 to 31% are actually cancerous. As biopsy is associated with greater cost and patient

anxiety, researchers are exploring the diagnostic capability of breast sonography in differen-

tiating malignant from benign solid masses. In a recent study, Stavros el al [2] developed a

classification scheme, using various human-extracted sonographic features, that achieved a

sensitivity of 98.4% and a negative predictive value of 99.5% on a data set of 750 solid breast

masses.

Computer-aided diagnosis (CAD) in breast ultrasound is being explored by various re-

searchers. Giger et al. have developed a computer-aided diagnosis scheme that uses clinically-

motivated, computer-extracted sonographic features to quantify breast lesion shape, mar-

gin, texture and posterior acoustic behavior [3]. Other researchers have concentrated on

computer-extracted texture features [4], [5] or RF signal characteristics [6]. Sahiner et el [7]

has explored computerized characterization of breast masses using texture features extracted

from three-dimensional ultrasound images.

We present a CAD method for breast lesions on ultrasound that performs automatic

feature extraction on automatically-segmented lesions. The computer-extracted features are

then merged through linear discriminant analysis. Three studies were performed on a large

clinical database of 400 cases: 1) evaluation of the marginal benefit of each feature to our

CAD method, 2) determination of the performance of our CAD method in distinguishing

carcinomas from different types of benign lesions, and 3) independent validation of the

method using 11 independent trials.
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2 Material and Methods

2.1 Database

The database in our study consists of 400 consecutive ultrasound examinations acquired dur-

ing diagnostic breast evaluations at ,the Lynn Sage Breast Center of Northwestern Memorial

Hospital, in which lesions were detected 'and either biopsied or aspirated. Of the 400 cases,

94 were malignant solid lesions, 124 were complex cysts, 107 were benign tumors (fibroade-

nomas and papillomas), 65 were fibrocystic disease, and 10 had other benign causes. The

database contains no simple cysts. The number of each lesion type and information on their

size is listed in Table 1. Examples of a malignant mass, a complex cyst, fibrocystic disease

and a fibroadenoma are shown in Figure 1. The 757 images in our study were obtained with

an ATL 3000 unit using a 5 MHz transducer and were captured directly from the 8-bit video

signal. The number of images per cases varied from one to six.

2.2 Notation

In what follows, the image gray level data is denoted by I(m, n) where m = 0, 1,... , - 1

and n = 0, 1, ... , N, - 1. Here, M1 is the number of pixels in the lateral direction of the

image and N, is the number of pixels in the depth direction of the image. The gradient

image is denoted by VI and is computed using Sobel filters. The gray level data of a

subimage, or region of interest (ROI), is denoted by R(m, n) where m = 0, 1, .. . , MR - 1

and n = 01, ,... , NR - 1. Again, MR is the number of pixels in the lateral direction of the

ROI and NR is the number of pixels in the depth direction of the ROI. The points on the

lesion margin have x and y coordinates (-yi(j), -72(j)) where the index j = 0, 1,..., J - 1 and

J is the number of points in the margin. We will also require a vector f (m, n) of unit length

in the radial direction from the geometric center of the lesion to the point indexed by (m, n).
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The geometric center of the lesion is computed by

(mc, nc) En E._ L(m, n)m IE. F_,. L(m, n)n
A ' A (1)

where L(m, n) is the lesion mask, a binary image having value 1 within the image and 0

elsewhere. A is the area of the lesion.

2.3 Lesion Segmentation

For each image, lesions were segmented both manually and automatically from the normal

breast tissue.

Manual segmentation involved displaying each ultrasound image on an IBM PowerDis-

play20 monitor, and having a mammographer or medical physicist outline the lesion margin.

Of the 757 images, 360 were outlined by a mammographer and 397 were outlined by a med-

ical physicist. In another paper [8], we performed an analysis to compare the lesion margins

of a medical physicist with the lesion margins of an experienced mammographer. Each of

113 images was outlined by two mammographers and a medical physicist, and the overlap [8]

between the first and second mammographers was compared to the overlap between the first

mammographer and the medical physicist. In this way, we demonstrated that the medical

physicist performs similarly to an experienced mammographer in the task of outlining lesion

margins on ultrasound images.

Our automatic lesion segmentation algorithm involves the following steps [8]: (1) pre-

processing by cropping and median filtering the image, (2) multiplication with a Gaussian

constraint function, (3) determination of potential lesion margins through gray-value thresh-

olding, and (4) maximization of a utility function for the potential lesion margins. The

Gaussian constraint function is centered at the manually defined lesion center, which is de-

termined by computing the geometric center of the manually segmented lesion margins. (For

description of how the geometric center is computed, see Section 2.2.)
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We use a utility function called the Average Radial Derivative (ARD), which gives the

average directional derivative in the radial direction

1 J

ARD = V1 VI(yi(j), y2(j)) r(7y1(j), -y2 (j)), (2)
j=O

where, as defined in Section 2.2, I is the image gray level data, VI is the gradient image,

('yl, y2) is the discretized lesion margin, J is the number of points in the discretized margin,

and r('y1, -y2) is the unit vector in the radial direction from the geometric center of the lesion

to the point (-yr, 72). Note that the center of the lesion is the only information defined

manually for the automatic segmentation algorithm.

2.4 Automatic Feature Extraction

In the clinical evaluation of breast lesions on ultrasound, radiologists consider features that

include lesion shape, margin definition, echogenic texture, posterior acoustic enhancement

or shadowing [9]. Benign lesions tend to demonstrate a lesion shape that is wider than taller,

well-defined, smooth margins, and posterior acoustic enhancement. Benign solid lesions tend

to be hyperechoic while benign cysts tend to be anechoic. Malignant lesions, on the other

hand, tend to be taller than wider with ill-defined, angular margins while also manifesting

hypoechogenicity, and posterior acoustic shadowing. We will consider computer-extracted

features which quantify these clinically-used features.

The shape feature that we consider is the depth-to-width ratio (DWR) of the lesion,

which is defined by

DWR = Depth _ maxj(y 2 (j)) - minj(-y2 (j)) (3)
Width maxj(71(j)) - minj(y 1(j)) (

where j = 0, 1,.--, J - 1. (See Section 2.2 for the definition of 'yl, 72 and J.) Cysts and

benign solids tend to be wider than deep and thus, benign lesions tend to yield smaller values

for the DWR then malignant lesions.
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The margin feature that we consider is the normalized radial gradient (NRG), which is a

measure of the average orientation of the gray level gradients along the margin. It is given

by [10, 11]

NjJ- VI(Y1(j),y 2(J)) "(' 1(J), 7 2 (J)) (4NR . J= -1 (4)
Ej=0 [V(1j,7()l

(See Section 2.2 for the definition of VI, f, 71, 72 and J. In general, the NRG varies between

-1 and 1, being near 1 when the gradints tend on average to point radially outward and near

-1 when the gradients tend on average to point radially inward. For ultrasound, however, the

NRG tends to be greater than zero. This is because almost all US lesions of significance tend

to be darker (i.e. less echogenic) than the surrounding tissue, and therefore, the gradients

along the lesion margin tend, on average, to point outward toward increasing gray-level

values. The benign lesions tend to yield larger values of the NRG. Observe that the NRG

contains no information about the magnitude of the gradient along the margin.

To quantify texture, the autocorrelation in depth of R, the gray level values in the minimal

rectangular ROI containing the lesion, is used to define

NR-1E(n)

COR = >R1U 5c n=O U-0 (0)' 5

where the autocorrelation in depth and its sum in the lateral direction are

NR-1-n

CY(m,n) = E R2(m,n+p)R2 (m,p),
p=O

MR-1

7(n) = E Cy(mn).
m=0

A picture of the minimal rectangular ROI for an example lesion is shown in Figure 2. Observe

that the COR is a sum and not an average. Thus, COR includes not only texture information,

but also size information.

Posterior acoustic behavior is quantified by comparing the gray-level values posterior to

the lesion to those in adjacent tissue at the same depth. This comparisons is accomplished
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"by considering differences in the average gray level values of the appropriate region of interest

(ROI). To avoid edge shadows, define an ROI which is the the lesion itself minus a portion

of its lateral sides. This is done to avoid edge shadows. The left, post, and right ROIs

are rectangular with the same width and area as the ROI which is the lesion itself minus a

portion of its lateral sides. These ROIs are shown schematically in Figure 3. The posterior

acoustic behavior feature considered is,.the minimum side difference (MSD). To understand

why the minimum is chosen, observe that t1he difference in the average gray-level posterior to

the lesion and that in adjacent tissue at the same depth tends to be negative for malignant

lesions because of posterior acoustic shadowing. Choosing the minimum thus errs on the

side of malignancy. The posterior acoustic behavior feature is defined as

MSD = min (Apost - Ale ft , Apost- Aright), (6)

where Apost, Aleft and Aright is the average gray-level value over the appropriate ROI.

The above features are computed for each image in both the manually-segmented and

computer-segmented approaches. A particular feature value for a given lesion and segmenta-

tion is the average of that feature over all the views available for the lesion, with each lesion

being represented by one to six images.

The computer-extracted features of shape, margin, texture and posterior acoustic behav-

ior are then merged through linear discriminant analysis (LDA) [12] for automatic classifi-

cation.

2.5 Evaluation

In order to investigate the marginal difference of adding a feature to the LDA, combinations

of two and three features are merged in addition to merging all four features. In the case of

merging all four features, both consistency and round robin evaluations are performed in the

task of distinguishing malignant and benign lesions. In a consistency LDA [12], each case is
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classified according to a classifier trained with all of the cases. In a round robin LDA [12],

one of the cases is removed from the data and that case is classified according to a classifier

trained with the remaining cases. This process is then repeated for each lesion. Since we are

using a linear classifier, we do not expect much change in the performance of the consistency

and round robin evaluations, and indeed, we found this to be the case.

It is of interest to compare how o~ur CAD method performs in differentiating carcinomas

from the different types of benign lesions. In particular, we use the two, three and four-

feature LDA classifiers to differentiate malignant lesions from benign lesions for the following

data subsets: (A) the entire database, (B) carcinomas and benign solid lesions (all benign

cases except for complex cysts), (C) carcinomas and complex cysts, (D) carcinomas and

benign tumors (fibroadenomas and papillomas), (E) carcinomas, complex cysts and benign

tumors, and (F) carcinomas and fibrocystic disease. Data subset (B) is important as there is

considerable clinical importance in the differentiation of malignant and solid benign lesions.

The reason for considering the data subset (E) is that first, complex cysts and benign tumors

are the most represented benign lesion types in our database. The second reason is that

complex cysts and benign tumors tend to have well-defined margins, and are thus more

easily differentiated from other types of lesions by our CAD method. Data subset (F) is

interesting because many of the cases of fibrocystic disease are difficult for radiologists to

see on our images, much less to diagnose.

For the two, three and four-feature classifiers, the LDA was trained on the entire database

and then tested on the data subset containing only the particular class of benign lesions of

interest. We emphasize that for a given set of features, the classifier is not retrained for each

data subset, but rather the same classifier (trained on the entire database) is used for each of

the different data subsets. For the round robin evaluation of the four-feature classifier, one

of the cases from a particular data subset is removed and that case is classified according to

the classifier trained with the remaining cases from the entire database. This process is then

repeated for each case in the particular data subset.

` ..r'.-'- 7•' `.•.`• • :•• ::'*.''.'--. . `.• • • , .- .. :-- - ---.- --- -- ., . ., - - . . . .. . .. .- * - .. . .....-. .. .
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Finally, independent validation was also performed on our CAD method. We randomly

selected half the cysts, half the benign solid lesions and half the malignant lesions to be our

training database of 200 cases. The remaining 200 cases formed the validation database (see

Figure 4). The random selection was performed 11 times. For each of the 11 randomizations,

LDA was used to merge the four computer-extracted features in the training database, and

the resulting classifiers were evaluated on the validation database.

Receiver operating characteristic (ROC) analysis [13] was used to evaluate (by case, not

by image) the performance of the individual computer-extracted features and the various

LDA classifiers in the task of distinguishing malignant lesions from various classes of benign

lesions. The area under the ROC curve, or A, value, and the partial area at 0.90 sensitivity,

or 0.9Azvalue [14], were used as indicators of merit.

3 Results and Discussion

Figures 5 and 6 show scatter plots of the four computer-extracted features derived from the

automatically-defined lesion margins for the entire database (400 cases). As anticipated,

malignant lesions tend to demonstrate a larger depth-to-width ratio, a smaller normalized

radial gradient value and a more negative minimum side difference than benign lesions.

The autocorrelation based feature demonstrates more overlap in the values of benign and

malignant cases.

Combinations of two, three and four of the computer-extracted features were merged

with LDA using the entire database and the performance of the resulting classifiers tested

on each data subset using ROC analysis. The A. and partial 0.9Azvalues, as well as the

standard estimated deviations on the A, values (computed by LABROC4 [15]), for each of

the individual computer-extracted features are shown in Tables 2, 3, and 4 for data subsets A

and B, data subsets C and D, and data subsets E and F, respectively. Also shown are the A,

and partial 0.gAzvalues for the combination of all four computer-extracted features, for both
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the consistency and round robin evaluations. When tested on the entire database, the best

performing combination of two computer-extracted features was the depth-to-width ratio

and the normalized radial gradient. The best performing combination of three computer-

extracted features was the depth-to-width ratio, the normalized radial gradient and the

autocorrelation feature. In Tables 2, 3, and 4, we report only the performance of these

strongest two and three feature classifiers.

Considering the round robin evaluation of all four features, we see that the classifier has

the best performance when differentiating malignant lesions from complex cysts, with A,

and 0.9Azvalues of 0.95 and 0.78, respectively, in the case of manual segmentation, and A,

and 0.9Azvalues of 0.94 and 0.71, respectively, in the case of automatic segmentation. The

worst performance was demonstrated by the classifier when differentiating malignant lesions

from fibrocystic disease with A, and 0.9Azvalues of 0.80 and 0.37, respectively, in the case of

manual segmentation, and A, and 0.9A~values of 0.70 and 0.19, respectively, in the case of

automatic segmentation. ROC curves of the round robin evaluations of the LDA using all

four features for data subsets A, B and C are shown in Figure 7.

It should be noted that for a given segmentation method and benign class, the per-

formances of the strongest two-feature, strongest three-feature and four-features classifiers

are fairly similar. To determine whether the differences in performance are statistically

significant, univariate z-score tests of the differences in the A, and partial A, values were

performed using the program CLABROC [16]. Using a p-value less than 0.05 as the cut-

off, we failed to show a statistically significant difference between the performances of the

strongest three-feature and four-feature classifiers in differentiating carcinomas from any

class of benign lesions, using either manual and automatic segmentation. This indicates that

for our database, the posterior acoustic behavior feature, MSD, does not add significantly to

the performance of the four-feature LDA. The correlation coefficients between the individual

features were all less than 0.42, with the smallest correlation coefficient being -0.06 between

the depth-to-width ratio and the normalized radial gradient.

S,,. . . ' ' , : , , -. , , , , ,,... .. .. ,.. . . . ., . ". .. .". ., - . . ' " . .' " . i• : • • . ' ': • " " '. ' ., \i ' * ' ',. . • -
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When comparing the performances of the strongest two-feature classifier to the strongest

three-feature classifier, a statistically significant difference in A, values was found in three

situations. The first is that of using lesion margins delineated through automatic segmen-

tation and testing the LDA on the entire database. Here the A, values of the strongest

two-feature and three-feature classifiers are 0.87 and 0.88, respectively, with a p-value of

0.03. The second is that of using lesion margins delineated through manual segmentation

and using the LDA classifiers to differentiate malignant lesions from complex cysts. Here

the A, values of the strongest two-feature and three-feature classifiers are 0.93 ± 0.02 and

0.95 ± 0.01, respectively, with a p-value of 0.001. The third is that of using lesion margins

delineated through manual segmentation and using the LDA classifiers to differentiate malig-

nant from complex cysts and benign tumors. Here the A, values of the strongest two-feature

and three-feature classifiers are 0.93 ± 0.02 and 0.95 ± 0.01, respectively, with a p-value of

0.02.

Independent validation was performed 11 times by splitting the entire database randomly

into two equal parts, as schematically shown in Figure 4. For each of the 11 independent tri-

als, LDA was used to determine two classifiers: one by merging the four computer-extracted

features derived from manually-defined lesions margins and the other by merging the four

computer-extracted features derived from the automatically-defined lesion margins. Then,

for each of the 11 independent trials, these two classifiers were tested on the validation

database, again using features derived from both manually-defined and automatically-defined

lesion margins. Table 5 lists the low, high and average A, and 0.gAzvalues resulting from

ROC analysis of each of the 11 independent trials in the task of distinguishing malignant

from benign lesions. Shown in Figure 8, for the case of using manually segmented lesions

for both training and validation, are the average A, values for the first n trials, where

n = 2, 3,. •., 11. Also shown are the error bars, which are the A, values plus and minus one

standard deviation. As Figure 8 demonstrates, the A, values plateau after about 8 random-

izations, indicating that 11 randomizations are sufficient. Shown in Figure 9 are the average
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ROC curves for each training/validation pair. The average ROC curves were obtained by

averaging the a and b ROC curve parameters [17].

4 Summary

In summary, we have developed a QAD method for the classification breast lesions on ul-

trasound and performed three studies ona database of 400 cases. First, to investigate the

marginal benefit of adding a feature to our CAD method, LDA was used to merge combina-

tions of two, three and four of the computer-extracted features. In the task of distinguishing

malignant from benign lesions, the best two feature classifier merges the depth-to-width and

normalized radial gradient features to yield an A, value of 0.90 using manual segmentation

and an A, values of 0.88 using automatic segmentation. At a p-value cutoff of 0.05, we fail

to show a statistically significant difference between the best two-feature classifier and the

four-feature classifier.

Second, the performance of our CAD method in distinguishing carcinomas from different

types of benign lesions was determined. Our CAD method yielded the best performance

in distinguishing carcinomas from complex cysts (A, = 0.95, round robin evaluation using

automatic segmentation) and the worst performance in distinguishing carcinomas from fibro-

cystic disease (A, = 0.70, round robin evaluation, using automatic segmentation). The four-

feature classifier using automatically-delineated lesion margins yielded a high performance

in the task of distinguishing carcinomas from complex cysts and benign tumors (A, = 0.92,

round robin evaluation).

Finally, 11 independent trials were performed on the entire database to obtain valida-

tion results. Using computer-extracted features derived from automatically-delineated lesion

margins for both the training and validation, a mean A, of 0.87 + 0.02 was obtained.

The results of this study warrant further investigation and in the future, an observer

study will be performed to evaluate the potential of our CAD method in improving physician

'":7• 7: <':" :U•i'• r< " v.•i:" Tr -• x . . . . . .i•::% :;<.. . --. 9 =• .: 7 :-: -- • < : :: !'• ::i' :.!:-: :::- <?:•ILi
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performance in the task of differentiating malignant from benign breast lesions on ultrasound.
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Table 1: The number of each lesion type, as well as size information.

Number Minimum Maximum Average

Lesion Type of Cases Size Size Size

Carcinomas 94 4 mm 37 mm 11 mm

Complex Cysts 124 4 mm 28 mm 9 mm

Benign Solid Lesions
(All benign cases except complex cysts)

Benign Tumors 107 4 mm 26 mm 10 mm
(Fibroadenomas and Papillomas)

Fibroadenomas 100 4 mm 26 mm 10 mm

Papillomas 7 3 mm 19 mm 11 mm

Fibrocystic Disease 65 3 mm 23 mm 10 mm

Inflammation 2 7 mm 8 mm 7 mm

Infection 1 9 mm 9 mm 9 mm

No Abnormality 3 5 mm 14 mm 11 mm

Radial Scar 3 14 mm 28 mm 19 mm

Intramammary Lymph Node 1 5 mm 5 mm 5 mm
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Data Subset A Data Subset B
Malignant Lesions (94) vs. Malignant Lesions (94) vs.
All Benign Lesions (306) Benign Solid Lesions (182)

Manual Automatic Manual Automatic
Segmentation Segmentation Segmentation Segmentation

Analysis Az (a) o.gAz A, (a) o.gA 2  Az (a) ] o.9Az A (a) jo.A
DWR 0.84 (0.02) 0.41 0ý82 (0.02) 0.40 0.85 (0.02) 0.48 0.81 (0.03) 0.41

NRG 0.76 (0.03) 0.27 0.75 (0.03) 0.34 0.70 (0.03) 0.19 0.68 (0.03) 0.21

COR 0.81 (9,03) 0.42 0.70 (0.d3) 0.22 0.75 (0.03) 0.30 0.62 (0.03) 0.15

MSD 0.73 (0.02) 0.20 0.74 (0.03) 0.24 0.68 (0.03) 0.14 0.68 (0.03) 0.16

DWR and NRG 0.90 (0.02) 0.55 0.88 (0.02) 0.55 0.88 (0.02) 0.52 0.83 (0.02) 0.45

DWR, NRG and COR 0.91 (0.02) 0.62 0.87 (0.02) 0.54 0.89 (0.02) 0.57 0.83 (0.02) 0.40

All four features 0.91 (0.02) 0.63 0.88 (0.02) 0.53 0.89 (0.02) 0.56 0.83 (0.02) 0.42

Round Robin:
All four features 0.91 (0.02) 0.61 0.87 (0.02) 0.51 0.88 (0.02) 0.53 0.82 (0.02) 0.40

Table 2: Performance in terms of A, and 0.9Azvalues of the LDA for combinations of the
individual computer-extracted features for both manual and automatic segmentation. The
standard deviations on the A, values are given in parentheses. The LDA classifiers were
tested in differentiating malignant lesions from all benign lesions, and in differentiating
malignant lesions from benign solid lesions (all benign cases except the complex cysts).



Submitted to Medical Physics 18

Data Subset C Data Subset D
Malignant Lesions (94) vs. Malignant Lesions (94) vs.

Complex Cysts (124) Benign Tumors (107)

Segmentation Segmentation Segmentation Segmentation

Analysis A- (-) o.9Az Az (a) o.9A; A (a) o.9 Az A (a) o.9Az

DWR 0.83 (0.03) 0.33 0.85 (0.03) 0.29 0.91 (0.02) 0.59 0.87 (0.02) 0.46

NRG 0.86 (0.02) 0.39 0.85 (0.02) 0.29 0.75 (0.03) 0.24 0.73 (0.03) 0.23

COR 0.91 (0.02) 0.62 0.81 (0.03) 0.30 0.78 (0.03) 0.34 0.63 (0.04) 0.13

MSD 0.81 (0.03) 0.30 0.82 (0.03) 0.36 0.73 (0.03) 0.19 0.73 (0.03) 0.13

DWR and NRG 0.93 (0.02) 0.56 0.94 (0.02) 0.63 0.94 (0.01) 0.66 0.91 (0.02) 0.51

DWR, NRG and COR 0.95 (0.01) 0.71 0.93 (0.02) 0.61 0.94 (0.01) 0.69 0.91 (0.02) 0.50

All four features 0.95 (0.01) 0.72 0.94 (0.01) 0.64 0.94 (0.01) 0.69 0.91 (0.02) 0.47

Round Robin:
All four features 0.95 (0.01) 0.70 0.93 (0.02) 0.61 0.94 (0.01) 0.66 0.90 (0.02) 0.44

Table 3: Performance in terms of A, and 0.9Azvalues of the LDA for combinations of the
individual computer-extracted features for both manual and automatic segmentation. The
standard deviations on the A, values are given in parentheses. The LDA classifier were tested
in differentiating malignant lesions from complex cysts, and in differentiating malignant
lesions from benign tumors.
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Data Subset 8 Data Subset F
Malignant Lesions (94) vs. Malignant Lesions (94) vs.

Complex Cysts and

Benign Tumors (231) Fibrocystic Disease (65)

Manual Automatic Manual Automatic
mentation SegS a gmentation Segmentation

Analysis A ý (a) ] o.gA ý Ao (cr) o.9 Aq Az Se ( o.9A _

DWR 0.86 (0.02) 0.44 0.86 (0.02) 0.38 0.78 (0.04) 0.33 0.72 (0.04) 0.28

NRG 0.81 (0.03) 0.33 0.79 (0.03) 0.39 0.63 (0.04) 0.13 0.62 (0.04) 0.16

COR 0.85 (0.02) 0.49 0.73 (0.03) 0.23 0.72 (0.04) 0.27 0.61 (0.04) 0.17

MSD 0.77 (0.03) 0.25 0.78 (0.03) 0.28 0.61 (0.04) 0.08 0.60 (0.05) 0.08

DWR and NRG 0.93 (0.01) 0.61 0.93 (0.02) 0.59 0.80 (0.04) 0.32 0.74 (0.04) 0.29

DWR, NRG and COR 0.95 (0.01) 0.70 0.92 (0.02) 0.57 0.81 (0.03) 0.38 0.74 (0.04) 0.28

All four features 0.95 (0.01) 0.70 0.93 (0.02) 0.56 0.81 (0.03) 0.38 0.73 (0.04) 0.26

Round Robin:
All four features 0.94 (0.01) 0.69 0.92 (0.02) 0.39 0.80 (0.04) 0.36 0.72 (0.04) 0.25

Table 4: Performance in terms of A, and 0.9Azvalues of the LDA for combinations of the
individual computer-extracted features for both manual and automatic segmentation. The
standard deviations on the A, values are given in parentheses. The LDA classifiers were
tested in differentiating malignant lesions from complex cysts and benign tumors, and in
differentiating malignant lesions from fibrocystic disease.
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Segmentation Segmentation Low High Average
Used for Used for 1 I

Training Validation Az () A o.gAz zA (a)__j 0.gAz

Manual Manual 0.87 0.50 0.94 0.72 0.91 ± 0.02 0.62 ± 0.07
Manual Automatic 0.85 0.51 0.90 0.70 0.87 ± 0.02 0.60 ± 0.05

Automatic Manual 0.82 0.28 0.93 0.62 0.88 ± 0.04 0.47 ± 0.15
Automatic Automatic 0.82 0.36 0.92 0.70 0.87 ± 0.02 0.52 ± 0.11

Table 5: Low, high and average Az and 0.9Azvalues of the LDA for the 11 independent trials.
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(a) (b)

(c) (di)

Figure 1: Examples of (a) a malignant lesion, (b) a complex cyst, (c) fibrocystic disease and
(d) a fibroadenoma. The manually-delineated margin is given in gray and the computer-
delineated margin in white.
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Figure 2: The ROI used to define the autocorrelation feature. The lesion is outlined with a
solid line and the ROI is outlined with a dashed line.
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Figure 3: ROIs used to define the posterior acoustic behavior feature.
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Training Database (200 Cases)

Entire Database (400 Cases) Complex Cysts 62

Complex Cysts 124 Benign Solids 91

Malignant Solids 47

Benign Solids 182 Randbm

Selection Validation Database (200 Cases)

Complex Cysts 62

Malignant Solids 94 Benign Solids 91

Malignant Solids 47

Figure 4: Random selection splitting the entire database in two: the training and validation
databases.
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Figure 5: The scatter plots indicate values for the depth-to-width and normalized radial
gradient features for the entire database. Margins defined via automatic segmentation were
used.
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Figure 6: The scatter plots indicate values for the auto-correlation based feature and the
minimum side difference for the entire database. Margins defined via automatic segmentation
were used.
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Figure 7: ROC curves of round robin evaluations for data subset A (the entire database),
data subset B (carcinomas and benign solid lesions) and data subset C (carcinomas and
complex cysts). Margins defined via automatic segmentation were used.
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Figure 8: For the manually trained and tested case, the average A, values and error bars for
the first n trials where n = 2,3, .. ,11.
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Automatic Segmentation of Breast Lesions

on Ultrasound

Karla Horsch* Maryellen L. Giger* Luz A. Ventatt Carl J. Vyborny*

May 10, 2001

Abstract

This paper presents a simple and computationally-efficient segmentation algorithm for

breast masses on sonography that is based on maximizing a utility function over partition

margins defined through gray-value thresholding of a preprocessed image. The performance

of the segmentation algorithm is evaluated on a database of 400 cases in two ways. Of the 400

cases, 124 were complex cysts, 182 were benign solid lesions and 94 were malignant lesions. In

the first evaluation, the computer-delineated margins were compared to manually-delineated

margins. At an overlap threshold of 0.40, the segmentation algorithm correctly delineated

94% of the lesions. In the second evaluation, the performance of our computer-aided diagnosis

method on the computer-delineated margins was compared to the performance of our method

on the manually-delineated margins. Round robin evaluation yielded A, values of 0.90 and

0.87 on the manually-delineated margins and the computer-delineated margins, respectively,

in the task of distinguishing between malignant and non-malignant lesions.

Keywords: Lesion segmentation, breast sonography, computer-aided diagnosis.
"*Department of Radiology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637
tCurrently: Baylor Methodist Beast Care Center, 6550 Fannin St., suite 701, Houston, TX 77030
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1 Introduction

Ultrasound is currently used to diagnosis simple cysts of the breast with a reported accuracy

of 96-100% [1]. However, due to the large overlap in the sonographic appearance of malig-

nant and benign solid lesions, most radiologists feel uncomfortable relying on ultrasound to

differentiate solid masses. This results in the utilization of biopsy procedures for most solid

breast lesions interpreted with sonography. In a recent study, Stavros el al [2] developed

a classification scheme which used various sonographic features identified by radiologists to

achieve a sensitivity of 98.4% and a negative predictive value of 99.5% on a data set of 750

solid breast masses. The use of specific sonographic feature hold the potential for accurate

classification of solid breast masses using ultrasound, thereby allowing a decrease in the num-

ber of biopsies performed for benign solid lesions. The identification of sonographic features

can also be potentially automated.

Computer-aided diagnosis (CAD) methods on breast ultrasound are being explored by

various researchers [3, 4, 5, 6, 7]. Lesion segmentation is often an important step in computer-

aided diagnosis schemes. In this paper, we propose a simple and computationally efficient

segmentation algorithm for breast sonography that is based on maximizing a utility function

over partition margins defined through gray-value thresholding of a preprocessed image. The

key step in the image processing involves multiplication by a constraint function whose level

surfaces are ellipses. When gray-value thresholding is applied to an image so processed, the

result is potential lesion margins (partition margins) that are deformations of ellipses, or

"lesion-like". A gradient-based utility function is then used to choose the lesion margin from

the potential margins. The performance of this algorithm is evaluated on a large database in

two ways: (1) by comparing computer-delineated margins to manually-delineated margins,

and (2) by comparing the performance of our CAD scheme on the computer-delineated

margins to the performance of our CAD scheme on the manually-delineated margins.
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2 Material and Methods

2.1 Database

Our database consists of 400 consecutive ultrasound cases, being represented by 757 images.

These images were acquired during diagnostic breast exams at the Lynn Sage Breast Center

of Northwestern Memorial Hospital. The cases were collected retrospectively and all had

been either biopsied or aspirated. Of the 400 cases, 124 were complex cysts, 182 were benign

solid lesions and 94 were malignant solid lesions. Note that the database does not contain

any simple cysts. The images were obtained with an ATL 3000 unit and were captured

directly from the 8-bit video signal. The number of images per cases varied from one to six.

Size information for each of the lesion types is given in Table 1.

Table 1: Size information for complex cysts, benign solid lesions and malignant lesions.

Lesion Type Minimum Size Maximum Size Average Size

Complex Cysts 4 mm 28 mm 9 mm
Benign Solid Lesions 3 mm 28 mm 10 mm
Malignant Lesions 4 mm 37 mm 11 mm

2.2 Lesion Segmentation

In each image, lesions were both manually and automatically segmented from normal breast

tissue.

Manual segmentation involved displaying each ultrasound image on an IBM PowerDis-

play20 monitor (Armonk, NY), and having a mammographer or medical physicist outline

the lesion margin using software designed for that purpose. The geometric centers of these

manually outlined lesions are then used as input to the automatic segmentation algorithm.

The automatic lesion segmentation algorithm involves (1) preprocessing by cropping and
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median filtering, (2) multiplication with a Gaussian constraint function, (3) determination of

potential lesion margins through gray-value thresholding, and (4) maximization of a utility

function on the potential lesion margins.

The segmentation method begins with preprocessing the image. The subcutaneous fat

is removed by cropping the top of the image by 35 pixels. We found that for this database,

cropping in this manner was sufficient for our purpose. In the future, instead of cropping

each image by a fixed number of pixels, the edge of the subcutaneous fat could be detected

in each image and used to estimate the appropriate number of pixels to crop. After removing

the subcutaneous fat, a 10 by 10 median filter is used to suppress the ultrasound speckle.

An example of a preprocessed image is shown in Figure lb.

The next step involves multiplying by a constraint function centered on the lesion center.

Kupinski and Giger used this method for lesions in mammography with the effect of suppress-

ing distant pixel values and encouraging potential lesion margins to be more "lesion-like"

[8]. A similar technique may be applied to ultrasound images by inverting the gray-scale of

the preprocessed image before multiplying by a constraint function. If C is the constraint

function, then the resulting image is

J(P) = c(P) I m ( )) - (1)

where P is the pixel location. Inverting the image changes the lesion from dark (low gray

values) to light (high gray values). The constraint function should have higher gray values

in the region of the lesion and gray values near zero far.,from the lesion. An example of an

inverted image is shown in Figure 1c. In this study, a Gaussian was used as the constraint

function. The Gaussian is centered at the manually defined lesion center, A1:

C(P) N(i5;p, 5)=exp(-( -
22 e (2)
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Here the covariance matrix is assumed diagonal,

K =(X ) (3)
0 oy2

where 2 and a 2 are the variances in the lateral and depth directions, respectively. These

variances are chosen as

orh (4)

with w being the estimated lesion width and h being the estimated lesion height (or depth).

An example of the preprocessed image multiplied by a Gaussian constraint function is shown

in Figure Id.

In order to study the sensitivity of the segmentation algorithm on the choice of variance,

both manual and automatic width and height estimation were performed. In this paper,

the segmentation algorithms using manually and automatically-estimated lesion width and

height are referred to as partially-automatic and fully-automatic, respectfully.

In the partially-automatic segmentation, manual estimation of the lesion width and height

is achieved using the manually-delineated lesion margin. If -Y(i) = (71(i), '7 2(i)) is a discrete

parameterization of the manually-delineated margin with -Y, and 'Y2 being the coordinates in

the lateral and depth directions, respectively, then we define

Wmanual = max(7 1(i)) - min(-y(i)), (5)

hmanual = max(-y2 (i)) - min(i 2 (i)). (6)

In the fully-automatic lesion segmentation, estimations of the lesion width and height are

determined through Sobel edge detection. The Sobel filtered images are defined by

l = y*I
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Figure 1: The results of the segmentation processing steps on an example image: (a) the
original image, (b) the preprocessed image (cropped and median filtered), (c) the inverted

preprocessed image, (d) the inverted preprocessed image multiplied by a Gaussian, (e) the
partions resulting from gray-value thresholding, and (f) the ARD as a function of partition
number. In (f), the smaller the partition number, the smaller the area enclosed by the

partition. For this particular example, the computer-chosen partition is number 35 and is
shown as a dashed line on the image in (e).

where 1• is the preprocessed image, * is the convolution operator, and F, and Fy are 3 by 3

Sobel filters in the lateral and depth directions, respectively,

-1 0 1• 1 2 1

S0 2 F y 4 0 0 0 (7)

-1 0 1 -1 -2 -1

Estimations of the location of the lesion edge along horizontal and vertical lines through the

lesion center are given by
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Y1
X0 Xt

Figure 2: Automatic estimations of edge points. The manually-delineated lesion is shown
for reference.

Xo = arg( min i (i, IY))( iE [1,AUx]

x, = arg( max IL(i, ty)) ,
(iE[up ,N.]

YO = arg( min I y(AX,i))

Yj = arg( iE[maNy ,i)).

An example of these locations is shown in Figure 2. The estimated location of lesion edges

are then used to estimate the lesion width and height by

Wautomatic = 2 * min(Pi - Xo,X 1 -t It), (8)

hautomatic = 2 * min(jU - Yo, Yl - my). (9)

Note that for the width, instead of using the length between the left and right edges, we use

twice the minimum of the lengths between the lesion center and the left and right edges.

This is done to avoid the overestimation which may result when distant pixels are mistaken
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for the lesion edge. Similar comments apply to the automatic lesion height estimation. The

lesion segmentation which results from using such estimations will err on the side of "under

growing" rather than "over growing".

When Wautomatic and hautomatic are used in equation (2), the lesion center is the only

information defined manually that is needed by the segmentation algorithm.

We emphasize that the variances in the width and depth directions for the Gaussian

constraint function are varied adaptively and automatically for each image. This differs

from the study done by Kupinski and Giger, in which a single variance is used.

After applying the Gaussian constraint function to the inverted preprocessed image,

gray-value thresholding defines partitions whose margins are potential lesion margins. The

potential margin that maximizes the utility function on the preprocessed image then defines

the lesion margin. The utility function used in our segmentation algorithm is the Average

Radial Derivative (ARD), which gives the average directional derivative in the radial direction

along the margin,
1

ARD(F) = V-1(15)" (/P) , (10)

PEP

where r is the discretized potential lesion margin, N is the number of points in r, ?(P)

is the unit vector in the radial direction from the geometric center of the partition to the

point / = (x, y), and • is the dot product between vectors. An example of potential lesion

margins resulting from gray-value thresholding and an example of the ARD as a function

of partition number are shown in Figures le and If. Note that this utility function differs

from that used by Kupinski and Giger for mammographic lesions. Their technique, based on

a utility function called the Normalized Radial Gradient, evaluates the average orientation

of the gray level gradients along the margin [8]. The Normalized Radial Gradient is used

elsewhere in this paper (see Equation 12).

Manual, partially-automatic and fully-automatic segmentation were performed on each

ultrasound image in the database. Examples of each type of segmentation are shown in
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Figure 3.

We observe that on average, both the partially-automatic and the fully-automatic seg-

mentation algorithms tend to result in smaller lesions than those defined manually. One

reason for this may be that radiologists seem to "overdraw" lesion margins. This remark

is based on observing many radiologists outline lesions. In addition, the lesions segmented

by the fully-automatic algorithm tend to be smaller than those segmented by the partially-

automatic algorithm. This is in part because the lesion height and width estimations for

fully-automatic segmentation tend to be less than those for partially-automatic segmenta-

tion. The fully-automatic width estimation is twice the minimum of the lengths from the

lesion center to the left and right lesion edges (see Equation 9). The partially-automatic

width estimation is the maximum horizontal length in the manually outlined margin (see

Equation 6). Similar definitions apply to the height estimations.

2.3 Performance Evaluation

The performance of the segmentation algorithm can be assessed by comparing the computer-

delineated outlines against the the outlines drawn by human observers. For a particular

lesion, the overlap, 0, between the computer-segmentation and the manual-segmentation is

given by
0 Area(M nl C) (11)

Area(M U C)'

where M is the set of points in the manually-segmented lesion and C the set of points in the

computer-segmented lesion (either partially or fully-autoqiatic). The overlap ranges between

zero and one, being zero in the case of no overlap and one in the case of exact overlap. To

study the overlap for the entire database, overlap thresholds are set. At each threshold, the

number of lesions "correctly" segmented is given by the number of lesions with 0 greater

than the threshold.

Ultimately, we are concerned with computer-aided diagnosis. Therefore, the performance
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Image Partially-Automatic Fully-Automatic

(b)

(c)

Figure 3: Examples of both the partially and fully-automatic segmentation results. The
manually-delineated margin is given in gray and the computer-delineated margin in white.
A complex cyst (a), a benign solid (b) and a malignant solid (c).



Horsch, Submitted to Medical Physics 11

of the segmentation algorithm can be measured through the performance of our automatic

classifier. The classifier uses linear discriminant analysis (LDA) to merge four computer-

extracted features. The classifier and the extracted features are described in the next section

and the appendix. Receiver operating characteristic (ROC) analysis [9] was used to evaluate

(by case, not by image) the performance of the individual computer-extracted features and

the LDA classifier in the task of distinguishing benign from malignant lesions. The A, [9]

and partial A, values [10] are used as indicators of merit. The A, value is the area under

the ROC curve and the partial A, value is the area under the ROC curve but above the 0.90

sensitivity line [9], [10].

2.4 Automatic Feature Extraction

Features that radiologists use clinically in the evaluation of breast masses on sonograms

include margin definition, echogenic texture, posterior acoustic enhancement or shadowing

and lesion shape [11]. Benign lesions tend to demonstrate well-defined, smooth margins,

posterior acoustic enhancement, and a lesion shape that is wider rather than taller. Benign

solid lesions can be hypoechoic or hyperechoic. Malignant lesions, on the other hand, tend

to demonstrate ill-defined, angular and irregular margins, marked hypoechogenicity, and

posterior acoustic shadowing.

Four characteristics were studied here: margin, echogenicity, posterior acoustic behavior

and shape. These were automatically quantified using the normalized radial gradient [12, 13],

the autocorrelation, a comparison of gray levels anhd the depth-to-width ratio. These are

briefly described in the appendix and discussed in detail elsewhere [14].

The computer-extracted features were computed for each image and for each of the seg-

mentation methods described earlier: manual, partially-automatic and fully-automatic. A

particular feature value for a given lesion (case) and segmentation was taken to be the

average of that feature over all the views available for the lesion, each lesion being repre-

sented by one to six images. Linear discriminant analysis (LDA) [15] was used to merge the
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computer-extracted margin, echogenicity, posterior acoustic behavior and shape features.

Both consistency and round-robin runs were performed. In a consistency LDA [15], each

lesion is classified according to a classifier trained with all of the lesions. In a round robin

LDA [15], one of the lesions is removed from the data and that lesion is classified according

to a classifier trained with the remaining lesions. This process is then repeated for each

lesion.

1.0 .. . . .' ....

I.~o
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Figure 4: The overlap results for the partially and fully-automatic segmentation on the entire
database (757 images).

3 Results and Discussion

3.1 Segmentation Overlap

The overlap results for the entire database are shown in Figure 4. The overlap of the

lesions defined through partially-automatic segmentation was slightly greater than the over-
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Figure 5: The overlap results on 113 images for the segmentation methods in addition to
the overlap results of another radiologist's outlines and a medical physicist's outlines.

lap of those defined through fully-automatic segmentation. This is not surprising as the

partially-automatic segmentation algorithm uses height and width estimations derived from

the manual margin outlines and so their overlap with the manually segmented lesions should

be greater. At a overlap threshold of 0.4, the fraction of images "correctly" segmented is

0.97 for the partially-automatic method, and 0.94 for the fully-automatic method. The mean

overlap for the partially-automatic segmentation method is 0.77 and for the fully-automatic

segmentation method is 0.73. A paired t-test for the overlap measures yields a p-value of

less than 0.0001.

In order to study variability in margin definition between different human observers,

113 images representing 55 cases were outlined also by a second radiologist and a medical

physicist. Figure 5 shows the overlap results for these 113 images. Table 2 gives the p-

values resulting from paired t-tests for means on the overlap measures from the various

segmentation methods. For example, the null hypothesis of the first row is that the overlap
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Table 2: The p-values resulting from paired t-tests for means on the overlap measures from
the various segmentation methods.

Segmentation Method Mean Segmentation Method Mean p-value

Second Radiologist 0.74 Medial Physicist 0.76 0.18
Partially-Automatic 0.71 Fully-Automatic 0.68 0.014
Partially-Automatic 0.71 Second Radiologist 0.74 0.18
Partially-Automatic 0.71 Medical Physicist 0.76 0.016
Fully-Automatic 0.68 Second Radiologist 0.74 0.0041
Fully-Automatic 0.68 Medical Physicist 0.76 0.0003

sample means of both data sets (the overlap for the 113 images from the second radiologist

and those from the medical physicist) are equal. A p-value less than 0.05 is commonly

used as the cutoff indicating a statistically significant difference. The overlap of the medical

physicist and the second radiologist are similar (p-value > 0.05, indicating a failure to show a

statistically significant difference), showing that the variability in margin definition between

two radiologists is similar to the variability between a radiologist and a medical physicist.

This provides some justification for using the medical physicist's outlines for part of the

database. In general, the overlap of the lesions defined by another human observer is similar

to the overlap of the lesions defined by partially-automatic segmentation and slightly better

than the overlap of lesions defined by fully-automatic segmentation.

3.2 Segmentation and Computer-Aided Diagnosis

It is important to consider how changes in segmentation affect the performance of individual

computer-extracted features in the task of differentiating benign and malignant lesions. The

A, values for the various computer-extracted features and for the LDA consistency and round

robin runs are given in Table 3. In Table 4 are shown the p-values associated with univariate

z-score tests of the differences in the A, and partial A, values for each individual feature,

as well as for the LDA consistency and round robin runs. The null hypothesis assumes that
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the data in different columns arose from binomial ROC curves having equal A, values.

For the individual computer-extracted features, the A, values ranged from 0.70 to 0.86 in

distinguishing benign from malignant lesions. The depth-to-width ratio (DWR) performed

best in this study, with an A, of 0.84 for the manual segmentation, 0.86 for the partially-

automatic segmentation, and 0.82 for the fully-automatic segmentation. At a significance

level of 0.05, we see a statistically significant difference in the A, value of the depth-to-

width feature when changing the segmentation from manual to partially-automatic (from

A= .84 to A, = .86) or from partially-automatic to fully-automatic (from A, = .86 to

A= .82). The correlation feature performs well in the manual segmentation case, with an

A, of 0.81. The performance in the partially and fully-automatic cases is not as high, with

A, values of 0.74 and 0.70, respectively. This difference in performance of the correlation

feature when changing the segmentation from manual to either partially-automatic or fully-

automatic is statistically significant. Both the normalized radial gradient and the maximum

side difference perform similarly with all three segmentation methods. This indicates that,

for our database, these features are robust to small changes in segmentation.

Table 3: Performance in terms of A, and 0.gAzvalues of individual computer-extracted fea-
tures as well as the LDA for manual, partially-automatic and fully-automatic segmentation.

Analysis Manual Partially-Automatic Fully-Automatic

Az o.9Az A, o.9Az A0 o.9Az

Depth-to-Width Ratio 0.84 0.41 0.86 0.47 0.82 0.40
Autocorrelation Based 0.81 0.42 0.74 0.28 0.70 0.22
Normalized Radial Gradient 0.76 0.27 0.76 0.34 0.75 0.34
Maximum Side Difference 0.73 0.20 0.73 0.23 0.74 0.24
LDA Consistency 0.91 0.63 0.90 0.61 0.88 0.53
LDA Round Robin 0.91 0.61 0.89 0.58 0.87 0.51

For the LDA consistency and round robin runs, the change in the A, and partial Az

are statistically significant when changing from either manual segmentation or partially-
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Table 4: P-values for Table 3.

Manual vs. Manual vs. Partially-Automatic vs.
Partially-Automatic Fully-Automatic Fully Automatic

Analysis A o.9Az 0.9 Az A o.0 Az

Depth-to-Width Ratio 0.006 0.035 0.47 0.26 0.033 0.036
Autocorrelation Based <0.0001 0.01 <0.0001 0.0015 0.11 0.87
Normalized Radial Gradient 0.80 0.39 0.43 0.042 0.42 0.11
Maximum Side Difference 0.49 0.92 0.70 0.61 0.99 0.99
LDA Consistency 0.21 0.14 0.0017 0.0045 .0053 .033
LDA Round Robin 0.21 0.18 0.0034 0.0066 .0094 .030

automatic segmentation to fully-automatic segmentation. However, we fail to demonstrate

a statistical difference between the manual and partially-automatic cases indicating that,

given good estimates of the lesion width and height, our segmentation algorithm performs

as well as manual segmentation in conjunction with our automatic classifier. Figure 6 shows

the performance of the LDA in terms of ROC curves for each type of segmentation in the

task of distinguishing malignant from benign lesions.

4 Summary

We have developed and tested a segmentation method for breast lesions on ultrasound. One

of the advantages of the method is that it tends to produce margins that are "lesion-like".

On the other hand, the segmented margins delineate the general shape of the lesions and may

not depict margin details such as spiculation or high irregularity [8]. However, segmentation

of the general lesion shape appears sufficient for the features chosen in our experiment, as

indicated by the performance of our classifier on the lesions segmented with the partially-

automatic method.

In conclusion, our automatic classifier yielded Az values of 0.91 and 0.87 in distinguishing

malignant from benign lesions when using fully-automatic segmention and manual segmen-
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Figure 6: Performance of discriminant scores in distinguishing malignant from benign lesions
for manual, partially-automatic and fully-automatic segmentations. Results are from round-
robin analyses.

tation, respectively. Our results indicate that when used in conjunction with our automatic

classifier, our automatic segmentation algorithm of breast lesions on ultrasound performs

similarly to manual segmentation.
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5 Appendix

To quantify the margin, we consider the normalized radial gradient (NRG) [12, 13], which is

a measure of the average orientation of the gray level gradients along the margin. It is given

by

NRG - Eper V(P) r(P)(12)ZE r IIVI(P)II[12

where I is the image, P = (x, y) is the pixel location, F is the discretized lesion margin, ?(P)

is the unit vector in the radial direction from the geometric center of the lesion to the point

P, and • is the dot product between vectors. For ultrasound, the NRG is bound between

zero and one.

The posterior acoustic behavior is quantified by comparing the gray-level values posterior

to the lesion to those in adjacent tissue at the same depth. Define Ap as the average gray-

level of a region of interest (ROI) posterior to the lesion. Similarly, let A, be the average

gray-level of the ROI to the left of the lesion at the same depth and A,, the average gray-level

of the ROI too the right of the lesion at the same depth. Then the minimum side difference

(MSD) is

MSD = min (Ap - A, ,Ap- Ar). (13)

The shape feature that we consider is the depth-to-width ratio of the lesion [3]. Let Y(i) =

(-y1(i), y2(i)) be a discrete parameterization of the margin with Ii and 72 the coordinates in

the lateral and depth directions respectively. Then

DWR Depth _ maxi('y2(i)) -mini( 2 (i))(14)
Width maxi(-yi(i)) - mini(7 1 (i)) (

To quantify texture, the autocorrelation in depth of the minimal rectangular ROI R

containing the lesion is used to define

COR (n), (15)
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where the autocorrelation in depth and its sum in the lateral direction are

C (m,n) = E R2 (m,n + p)R2 (m,p) ,
p

S= E CY (m ,n)
m
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"Contrast-enhanced magnetic resonance imaging (MRI) of the breast is known to reveal breast
cancer with higher sensitivity than mammography alone. The specificity is, however, compromised
by the observation that several benign masses take up contrast agent in addition to malignant
lesions. The aim of this study is to increase the objectivity of breast cancer diagnosis in contrast-

enhanced MRI by developing automated methods for computer-aided diagnosis. Our database
consists of 27 MR studies from 27 patients. In each study, at least four MR series of both breasts
are obtained using FLASH three-dimensional (3D) acquisition at 90 s time intervals after injection

of Gadopentetate dimeglumine (Gd-DTPA) contrast agent. Each series consists of 64 coronal slices
with a typical thickness of 2 mm, and a pixel size of 1.25 rmm. The study contains 13 benign and
15 malignant lesions from which features are automatically extracted in 3D. These features include
margin descriptors and radial gradient analysis as a function of time and space. Stepwise multiple
regression is employed to obtain an effective subset of combined features. A final estimate of
likelihood of malignancy is determined by linear discriminant analysis, and the performance of
classification by round-robin testing and receiver operating characteristics (ROC) analysis. To

assess the efficacy of 3D analysis, the study is repeated in two-dimensions (2D) using a represen-
tative slice through the middle of the lesion. In 2D and in 3D, radial gradient analysis and analysis
of margin sharpness were found to be an effective combination to distinguish between benign and
malignant masses (resulting area under the ROC curve: 0.96). Feature analysis in 3D was found to
result in higher performance of lesion characterization than 2D feature analysis for the majority of
single and combined features. In conclusion, automated feature extraction and classification has the
potential to complement the interpretation of radiologists in an objective, consistent, and accurate
way. © 1998 American Association of Physicists in Medicine. [S0094-2405(98)01509-0]

Key words: breast imaging, magnetic resonance imaging (MRI), computer-aided diagnosis, ROC
analysis, contrast agent

I. INTRODUCTION ation of breast-conserving therapy. From current consensus,

MR is particularly suited for specific problem cases, such asBreast cancer is a major cause of death among women in
patients who have high risk of developing breast cancer, pa-mostweserncoutris. lthogh ammgrahy as em- tients with implants, postoperative scars, or clinical evidence

onstrated to be the most efficient tool for early detection of obeast cantha cotoberdtected by covnioal di-
of breast cancer that cannot be detected by conventional di-

breast cancer, the technique may result in a missed fraction
of cancers as high as 9%. In addition, the fraction of lesions agnostic methods. 4 -6

found by mammography that is sent to biopsy and proves to
be malignant can be as low as 10%-20%.2 Accurate exami- since the introduction of contrast agents that alter the spin-

nation of mammograms is particularly difficult in dense lattice (T9) relaxation time. Due to increased vascularity
breasts, because lesions may be occluded by dense tissue. and capillary permeability of tumors,9 contrast-enhanced

Consequently, complementary information by ultrasound or MRI shows better distinction between lesions and normal

biopsy is often obtained, tissue than conventional MRI alone. Nonetheless, contrast-

Magnetic resonance imaging (MRI) is a promising enhanced MRI is known to enhance both malignant as well

complementary technique to mammography because of its as some benign types of masses, thus compromising the

inherent three-dimensional (3D) nature. In addition to pos- specificity of the technique. In general, the sensitivity re-
sible improvement of diagnostic accuracy from dense ported for diagnosis of breast cancer in MR images is larger
breasts, MRI has shown superior potential for quantification than 90%,1o but the reported specificity varies considerably
of tumor volume, and detection of multifocal and multicen- and may be substantially lower.6, 1 The majority of these
tric disease. 3,4 These issues are of interest in the consider- studies are solely based on enhancement as a function of

1647 Med. Phys. 25 (9), September 1998 0094-2405/98125(9)1164718/$1l0.00 1998 Am. Assoc. Phys. Med. 1647
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time. To improve the specificity without reducing the sensi-
tivity, the morphology of enhancement has been studied as
well.)'' 2 Most of these techniques are, however, based on
slice by slice assessment of the morphology in 2D. The per-
formance is likely to improve when one takes full advantage
of the 3D nature of the MR data.

An important aspect that may contribute to varying speci-
ficity is interobserver variation in the interpretation of the
MR images. Nearly all studies presented to date are based on
visual assessment by one or multiple radiologists. Mus-
surakis et al. 13 report significant variability in the assessment
of lesions in MR data by human readers and stress the im-
portance of standardized terminology. Heywang-K6brunner
et al.6 indicate that differences in interpretation guidelines
will influence the accuracy of contrast-enhanced MRI. At-
tempts to increase the objectivity of the interpretation have
recently been reported using quantitative rating of features
such as spiculation by a radiologist, followed by merging of
these ratings using an interpretation model.' 2 In this scheme,
the classification stage is objective, but the rating of the fea-
tures is still subjective to the interpretation of the radiologist.

Automated quantification and classification of features to FIG. 1. Example of contrast enhancement in a malignant lesion, illustrated

discriminate between benign and malignant lesions has been on a dynamic series of a single MR slice. Note the irregular "donut" shape

pursued in other diagnostic areas such as mammography in of the lesion (arrow) as it enhances in time before merging with the back-

the context of computer-aided diagnosis (CAD).14 Several ground.

investigators have successfully developed methods for com-
puterized detection15-17 and computerized classification 18-20  were taken per patient at 90 s intervals. Figure 1 shows an
for ultimate use in CAD as "second readers" for radiolo- example of a dynamic MR sequence on a single slice
gists. In addition to objective analysis, computerized analysis through a malignant lesion.
can take full advantage of information across slices in 3D The database in this study contains 28 lesions: 13 benign
data sets which is difficult to assess visually from individual and 15 malignant masses. Histology in 27 out of 28 lesions
images. was confirmed by open excisional biopsy, one case was be-

The aim of this study is to increase the objectivity of nign based on core biopsy and four-year follow up. The dis-
breast cancer diagnosis in contrast-enhanced MRI. This aim tribution of the size of the lesions is shown in Fig. 2. The
is pursued by automated extraction of features that quantify relative position of the lesions in the breast varies, some are
spatial properties of contrast enhancement in 3D, and by close to the skin and near the chest wall. Benign masses
merging different features into an estimate of malignancy include fibroadenoma (6/13), papilloma (2/13), and benign
using automated classification. The ultimate objective of this mastopathy (5/13). Malignant cases include papillary (1/15),
feasibility study is to reduce the number of biopsies of be-
nign lesions and to increase the sensitivity for cancer cases.

10
n Benign

II. MATERIAL AND METHODS 9 . . .Malignant

A . Im age and patient data 8 . .. . ........-.

The images in this study were obtained using fast low- 7

angle shot (FLASH) 3D acquisition at field strength of 1.0 T -o 6 . ...
(Siemens Impact, Siemens, Erlangen, Germany). The acqui- .
sition parameters were: TR = 14.0 ms, TE = 7.0 ms, and flip E= 4. . . . . . . . . . . .
angle of 25'. Fat suppression was not employed. The patients -___

were scanned in prone position using a standard double- 3 ......

breast coil. In total, 141 preoperative MR series were ac- 2 j
quired from 27 patients. Each series contains 64 coronal
slices with a typical field of view of 32X 16 cm 2. Each slice 1
contains 256X 256 pixels of 1.25X 1.25 mm2 and has a typi- 0

cal thickness of 2 mm. There are no gaps in between the 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 >10

slices. Gadopentetate dimeglumine (Gd-DTPA) contrast Volume of lesion (cm
3
)

agent was injected intravenously by power injection after FIG. 2. Distribution of the size of benign and malignant lesions in our

acquisition of the precontrast MR series. At least four series database.

Medical Physics, Vol. 25, No. 9, September 1998
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removed by morphological closing operations: 22 Morpho-
logical erosion22 is employed to remove an empirically es-
tablished margin of two voxels from the external surface of
the breast mask. This step is required to avoid strong voxel-
value gradients near the borders of the breast to be included

in the computation of gradient-based lesion features. Subse-
quent computation of features in the original MR data is
restricted to voxels that have value "1" at the corresponding

locations in the breast mask.
Features investigated in this study concern the inhomoge-

neity of uptake in the lesion [Eqs. (1) and (2)], sharpness of
the lesion margin [Eqs. (3) and (4)], analysis of the shape of
the lesion [Eqs. (5) and (6)], and radial gradient analysis [Eq.
(7)].

If the set of voxel values in the lesion at time frame "i"
is given by Fj(r,i), where vectors r point to the lesion, and
index "i" runs from frame 0 (i.e., the frame before injection
of contrast) to M- 1 (where M is the total number of time
frames), then the inhomogeneity of contrast uptake is char-

acterized by two features which are defined by
[variancerFi( r, i)

Fmc. 3. Visualization of lesion shape, size, and orientation in 3D with respect i-0 m variancerF I(r,0) '

to reference landmarks. The MR data is acquired in slices in coronal orien- j=O. M- dvariancerFj(r,0)
tation, but the computerized analysis of the lesion is performed in all three
dimensions simultaneously. referred to here as variance of uptake

and

tubular (2/15), and medullary carcinoma (1/15), invasive m variancerFI(r,i) (2)
lobular (3/15) and (IdIctal (7/15) cancer, and ductal carcinoma min variancerFm(ri+ I
in situ (DCIS) (1/15). i=0..M v

referred to here as change in variance of uptake,

B. Feature extraction where variancerFt(r,i) denotes the computation of the vari-
In this preliminary study, suspect masses were delineated ance of the voxel values at all r in the lesion at fixed time

by a radiologist (U.B.) experienced in MR-mammography frame "i."
and blinded concerning the histological diagnosis. This seg- The sharpness of the lesion margins is characterized by

mentation was performed in the subtraction images two features as well. The first feature is given by
(postcontrast--precontrasl) by contouring the enhanced tumor ( meanl. V[F,,(r,i) F
area in each slice that intersected the lesion. All available max , -- -- (3)
subtraction images were used for this purpose. As an addi- i=o .... M-1[ meanrF,,(r,i)

tional reference, the radiologist had access to the originalzý referred to here as mar-in gradient,
(nonsubtracted) MR images as well. All other stages of the
scheme, though, as described below, are fully automated, where V[F,(r,i)-F,,(r,O)] denotes the set of voxel-value

The proposed strategy for computerized analysis of dy- gradients at the margin of the suspect lesion in the difference
namic MR data in 3D consists of two consecutive stages: images of time frame "i" and precontrast frame "0." Thus,
Feature extraction and classification. The feature extraction the sharpness of the uptake of contrast is computed at the
stage is aimed at quantification of spatial properties of en- lesion margin. The range of vectors r in F, is limited to a
hancement in suspicious lesions. Feature extraction has two shell-three voxels thick-centered on the surface of the le-
parts: Extraction of the breast volume, and quantification of sion. The shell is employed to account for small inaccuracies
spatial properties. Although the MR data is obtained in that may occur in the delineation of the lesion outlines.
slices, the analysis of the lesion is performed in 3D, taking The second feature related to margin sharpness is defined
all directions into account (Fig. 3). The volume of the breast by
is extracted from the MR data by global segmentation of
pixel values at a threshold that maximizes the interclass vari- -aiace__ [F,(_)-F2_rO)]4)
ance between two pixel-value regions. 2 1 All slices in the data [meanrFm,(r,i)] 2  (4)
contribute to the computation of a single threshold value. referred to here as variance of margin gradient,
The result of the segmentation is a 3D binary mask in which
breast voxels are labeled with value "l," and background and is only computed from the subtraction frames of "i" and
voxels with value "0." Remaining gaps in the mask are "0" where the margin gradient [Eq. (3)] is maximum.

Medical Physics, Vol. 25, No. 9, September 1998
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In Eqs. (3) and (4), computation of the spatial gradient is 0.03

accomplished in 3D by convolution with the components of
a 3 X 3 X 3 Sobel filter23 in three orthogonal directions. Note 0.02

that this approach takes information on lesion margins across U.slices into account. Xoo 0.01,•;o,

Circularity of the shape of the lesion in 3D is given by
(a) 0 0.2 04 0.6 0.8 1volume of lesion within sphere of effective diameter 11 R. C 11

volume of lesion 0.03

(5)
- 0.02

and irregularity in 3D by 0
0,12

,r- effective diameter 2

- surface of lesion ' (6)

(b) 0 02 0.4 0.6 0.8 1

where the effective diameter is defined by I R. -Gi

3 /3 -volume of lesion FtG. 4. The radial gradient histogram (RGH) of a volume of interest (VOI)
2 with a benign lesion (a) and a malignant lesion (b). Shown are images of

4 7" representative cross sections through the lesions. The radial vector (R) origi-

nates in the center of the VOL. The gradient vector (G) indicates the local
The volume and the surface of the lesion are estimated from direction of the voxel-value gradient. The RGH maps the dot product of R

the contours of the segmented masses, For this purpose, a set and G against the frequency of occurrence (RGH values). In benign lesions,
R and G tend to point in comparable directions within the VOI, yielding a

of binary images is created in which the pixels at and en- peak in the RGH around 1.0 (a). Malignant lesions typically extend in less

closed by the contours are set to value "1" (object pixels), spherical patterns resulting in a flat RGH (b). The variance of RGH values is

and remaining pixels to value "0" (background pixels). The used to quantify the flatness of the RGH.

volume of the lesion is determined by multiplying the num-
ber of object pixels with the volume of one voxel in world
coordinates. The surface of the lesion is computed by com- IV[Fb(r,i)-Fb(r,O)]. (r-rc)l
bining the set of 2D binary images into a 3D binary repre- =V[Fb(ri)-F
sentation of the lesion. Next, the faces of the object voxels b(r,O)]l-.]lr-rcll
that are exposed to background voxels in the 3D binary vol- where V[Fb(r,i)-Fb(r,O)] indicates the set of voxel-value
ume are identified by examining the value of the neighboring gradients in a rectangular box of interest at the subtracted
voxels in the x, y, and z directions. The face of an object time frames "i" and "0." The box encompasses the suspect
voxel is exposed to the background if the neighboring voxel lesion with an additional margin of three voxels along all
has value "0." The surface of the lesion is subsequently sides. Vector r, points to the center of this rectangular box.
determined by calculating the sum of the areas of the faces Thus, r, generally will not (and does not need to) point to the
exposed to the background in world coordinates. Note that exact center of the lesion. This aspect will be reviewed in
the circularity and irregularity in 3D are computed from the more detail in the Discussion section.
volume and the surface of the lesion in world coordinates- In essence, above equations quantify the observation that
rather than in voxel coordinates-to account for the differ- malignant lesions take up contrast agent in a less homoge-
ences between pixel size and slice thickness (i.e., the aniso- neous pattern than benign masses, have less sharp boundaries
tropic voxel shapes). and are more irregularly shaped. "Circularity" quantifies

Radial gradient analysis is based on examination of the how well the lesion conforms to a spherical shape [Eq. (5)],
angles between voxel-value gradients and lines intersecting a and "irregularity" indicates the roughness of the surface of
single point near the center of the suspect lesion (i.e., lines in the lesion [Eq. (6)]. Radial gradient analysis was previously
radial directions). Radial gradient values are given by the dot applied to mammograms to quantify spiculation of projected
product of the gradient direction and the radial direction. The masses.1 8 The analysis provides a measure that indicates how
histogram of radial gradient values-quantifying the fre- well the image structures in a region of interest (ROI) extend
quency of occurrence of the dot products in a given region of in a radial pattern originating from the center of the ROI.
interest (Fig. 4)-is called the radial gradient histogram Round and well-defined masses produce different measures
(RGH). Analysis of the RGH yields than irregular and spiculated lesions. In the current study,

radial gradient analysis is extended to 3D. The feature
max {variancep H (p)}, (7) "Variance of RGH values" quantifies how well the image

i= .... M-1 p)>0

structures in a volume of interest (VOI) extend in a spherical
referred to here as the variance of RGH values, pattern originating from the center of the VOI (Fig. 4).

With the exception of circularity and irregularity, which
In this relationship, H(p) denotes the normalized RGH, and are computed from the coordinates of the segmented lesions,
variable p is given by the normalized dot product all other features are extracted from the data at each available

Medical Physics, Vol. 25, No. 9, September 1998
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FIG. 5. Relationships of various features for the database of benign and malignant lesions (a) margin gradient analysis and radial gradient analysis, (b) shape
analysis.

time frame and combined by minimum or maximum opera- Ill. RESULTS
tions, such as described by Eqs. (1)-(4) and (7).

To assess the efficacy of 3D analysis in comparison with All features investigated in this study show potential for
conventional 2D techniques, the feature extraction and distinguishing between benign and malignant lesions (Fig. 5,
analysis procedures were repeated, although in 2D, on a Table I). As expected, benign masses were found to extend
single representative slice through the middle of the lesions. more along spherical patterns than malignant lesions, and the

margins of benign masses were found to be sharper on aver-
age than the margins of malignant lesions. An interesting

C. Feature selection and classification observation is, however, that the variance of sharpness along

From the total set of seven features, stepwise multiple the margin of the lesions is larger on average for benign than
regression24 produced a selection that performs efficiently in for malignant masses [Fig. 5(a)]. A possible explanation isngressiown p u ed n isns. T offered in the discussion section. Less surprising was the
distinguishingolbetwe bdnign and rem aingneantuest aions Te result that some malignant lesions tend to be more irregularly
technique involves adding and removing features to obtain a sae hnbng ass[i.5b] iclrt ahw

limited subset that provides statistically significant separa- e d t o be a stog featur tisiuishb we

tion in the estimated likelihood of malignancy. Linear dis- ever, not found to be a strong feature to distinguish between

criminant analysis 25 is employed to estimate this likelihood
of malignancy from single or combined features. TABLE I. Area under the ROC curves (A,) using 2D and 3D analysis of

individual and combined features. The standard deviations (1 SD) are shown
in parentheses.

D. Evaluation Feature A, (2D) A, (3D)

The performance of the computerized method in classifi-
cation (distinguishing between benign and malignant lesions) Variance of uptake 0.54(0.11) 0.72(0.11)

is quantified by receiver operating characteristics (ROC) Change in variance of uptake 0.59 (0.11) 0.77 (0.10)

analysis. 26 In particular the area under the ROC curve
(A,)-which maps the fraction of false positives to the frac- SharpnessMargin gradient 0.83 (0.07) 0.88 (0.07)
tion of true positives-is used as a measure of performance Variance of margin gradient 0.71 (0.10) 0.86 (0.07)
in this study. Sensitivity is defined as the true-positive frac-
tion, specificity as one minus the false-positive fraction. The Shape Circularity 0.67 (0.10) 0.65 (0.10)

area under the ROC curve at true-positive fractions larger Irregularity 0.66 (0.10) 0.80 (0.08)
than 0.9 (partial A,) is employed to rate the performance of
computerized analysis at high sensitivity levels. 27  Radial gradient analysis

The general performance of the computerized method is Variance of RGH values 0.80(0.08) 0.88 (0.07)

estimated by round-robin testing28 on our current database. Combinations of features
This "leave-one-out" technique involves estimating the Variance of RGH values and 0.87 (0.11) 0.92 (0.05)

likelihood of malignancy from all cases but one, testing clas- margin gradient
variance of RGH values and 0.86 (0.08) 0.96 (0.03)

sification on that single case, and repeating the procedure variance of margin gradient
until each case has been tested individually.
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FIG. 7. ROC curves showing the performance of effective combined features
FiG;. 6. ROC curves showing the performance of the best single features in inteasofdtngshgbtwnbngnndmlnnteins(ig

the ask of'disingishng etwen bnig an maignnt esins. in the task of distinguishing between benign and malignant lesions (using
tihe task of distinguishing between benign and malignant lesions, round-robin testing). (RGH=Radial gradient histogram.)
(RGH=Radial gradient histogram.)

Although statistical significance of the differences in per-
benign and malignant in our database (Table I). Using single formance between 3D and 2D analysis of features could not

features only, the highest performances were obtained with berascertaeen th cn t siz of oratabas con-
radil gadint nalyis Az=.88, sarpnss Az=.88and be ascertained given the current size of our database, a con-

radial d gradien analysis oAf 0.88, lsharpness (Az = 0.88). and sistent superior performance using 3D analysis was found for
0.86), and shape analysis of the lesion (Az=0.80). The cor-

responding ROC curves are shown in Fig. 6. For operation at nearly all single and all combined features (Table 1).

sensitivities larger than 0.9, the highest performance was
achieved with the "margin gradient" feature, yielding a par- IV. DISCUSSION
tial A, value of 0.70. Note that although the "margin gradi-
ent" and "variance of margin gradient" have comparable A, Automated extraction of mathematically defined features
values (Table I), their ROC curves are differently shaped in 3D yields encouraging results in distinguishing benign
(Fig. 6). The curve of the "margin gradient" feature is from malignant lesions (A,=0.96). A, values of classifica-
steeper, indicating that higher specificity can be achieved at tion achieved by manual rating of features by radiologists
high sensitivity. In addition, "variance of RGH values" and have been reported12 to be around 0.86. Direct comparison
"margin gradient" have comparable Az values, although the with results reported in the literature is, however, difficult
shapes of their ROC curves differ. The "margin gradient" due to differences in database used. In addition, most reports
feature was found to perform better at higher sensitivity than indicate only a single operating point for sensitivity and
the "variance of RGH values" (Fig. 6). specificity on the ROC curve. In our study, the operating

Stepwise multiple regression at a confidence region of point must be tuned to a desired trade-off between sensitivity
95% resulted in combination of two features: "Variance of and specificity. This trade-off would be determined clinically
RGH values" [eq. (7)] and "variance of margin gradient" by a cost-benefit analysis. In our current study, a sensitivity
[eq. (4)]. Their combined performance in distinguishing be- of 100% can be obtained at specificity of 77%. At this oper-
tween benign and malignant lesions resulted in an A, value ating point, all malignant lesions, including one case of
of 0.96. The corresponding ROC curve is shown in Fig. 7. DCIS, are successfully identified as malignant. One of the
Some combinations that have more than two features yielded next steps of research is to study the accuracy of breast can-
slightly better results, but this increase in performance was cer diagnosis done by radiologists when assisted by the au-
not found to be statistically significant. tomated technique as a second opinion.

Based on round-robin testing on our database, the com- We found that the margins of benign lesions are typically
puterized scheme achieved 77% specificity (10/13) at 100% sharper in appearance than the margins of malignant lesions,
sensitivity. Note that all lesions in our database had been which is consistent with observations from other studies.
biopsied. In other words, all benign lesions were basically When the average sharpness of the lesion margins is high,
misclassified before biopsy, whereas the computerized deviations from this average caused by anatomical morphol-
method misclassified only 3 of the 13 benign lesions without ogy, partial volume effect, or inaccuracies in segmentation of
misclassifying any malignant cases. These preliminary re- the lesion, will result in higher variance values than would
sults indicate that the computerized method has the potential occur with a small average sharpness of lesion margins.
to reduce the number of biopsies of benign lesions. Thus, the variation of sharpness along the margin is expected
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to be larger for benign than for malignant cases. Our prelimi- Automated segmentation of the lesions is likely to further
nary7 results indicate that this observation yields good poten- improve the objectivity of diagnosis. Techniques for this pur-
tiarlto discriminate between benign and malignant lesions pose have recently been investigated, e.g., Lucas-Quesada
[Fig. 5(a), Table I]. et al.,3 1 and will remain a subject of future research. In our

In the current study, we found that spatial features are study, the sharpness-related features are computed in a shell
effective to distinguish between benign and malignant le- around the indicated outline of the tumor to account for
sions, in particular the combination of radial gradient analy- small inaccuracies in the segmentation. Radial gradient
sis and analysis of margin sharpness. Most studies of analysis does not require accurate delineation of the margins
contrast-enhanced MRI of the breast are based on analysis of of the lesion: The region of interest is a rectangular box
temporal features of uptake only-such as speed of uptake- positioned roughly around the lesion in the subtracted im-
and report varying specificity. It is possible, however, that ages. Spurious gradients associated with background noise
consistent high performance can be obtained from temporal are expected to be randomly distributed with respect to the
features when the temporal resolution of the data is high. radial directions of the noise voxels, thus adding a small
Boetes et al.29 report encouraging results from temporal fea- constant offset to the RGH values. Consequently, a region of
tures in data obtained at high temporal resolution at the ex- interest somewhat larger than the size of the actual lesion is
pense of spatial resolution. Physiological models of contrast not expected to have much effect on the variance of the RGH
uptake and washout have also been applied to increase the values. The radial lines intersect the center of the rectangular
specificity of the diagnosis from temporal features, e.g., bounding box positioned around the lesion. This intersection
Tofts et al.3 ° The preliminary results from our study indicate point will usually not coincide with the exact center of the
that good distinction between benign and malignant lesions lesion. Nevertheless, since the shape of the lesions is gener-
can be obtained from spatial features without extremities in ally not perfectly symmetrical and regular, the center of the
temporal or spatial resolution. An important aspect is, how- lesion is expected to vary with the shape of the lesions in a
ever, 3D acquisition and analysis of the spatial features. The similar way as the center of the rectangular bounding box is
results from the current study indicate that it is beneficial to expected to vary with the shape of the lesions. Consequently,
analyze spatial features in 3D rather than in 2D to distinguish neither definition of the center is expected to yield superior
between benign and malignant lesions. performance compared to the other.

In addition to differences in image acquisition, other as- It is likely that the ability to distinguish between benign
pects may also influence the specificity of the diagnosis. Dif- and malignant lesions will decrease for smaller tumor sizes.
ferences in bolus size and particular hemodynamic character- The smallest lesion in our database has a volume of 0.1 cm3

istics of each patient as well as hormonal factors, may cause (benign case) and was correctly classified at no loss of ma-
variable enhancement. 4'6 Image artifacts can be caused by lignant cases. At this operating point, 3 of the 13 benign
inhomogeneity of the magnetic field and by patient motion. lesions were incorrectly classified as malignant. These le-
To reduce the effect of some of these aspects, features have sions had volumes of 0.2, 0.9, and 3.4 cm3, respectively
been normalized within or across time frames in the same (papilloma and benign mastopathy). Other benign lesions
examination. Gradient artifacts caused by inhomogeneity of with similar histology and volumes were, however, correctly
the magnetic field typically occur at much lower spatial fre- classified, as well as all malignant lesions, which have sizes
quency than the lesion margins, and were found to be of less ranging from 0.1 cm 3 to larger than 10 cm3 (Fig. 2). In con-
importance in this study. Patient movement is estimated to clusion, our database did not show an obvious correlation
be about 2 mm on average in our data set. Because the voxel between accuracy of the performance of the computerized
dimensions are 1.25 X 1.25 X 2.0 mm3, the motion causes diagnosis and lesion size, nor between accuracy and histol-
some blurring of the lesions rather than an actual displace- ogy. Evaluation of the computerized analysis technique on
ment of image structures. To avoid image artifacts due to larger databases is, however, required, and may warrant the
motion of the heart, the MR slices were obtained in coronal use of more advanced classification methods, such as artifi-
orientation. Different slice thickness may also result in dif- cial neural networks.
ferences in performance. To take the anisotropic voxel Once a mass is suspected to be malignant, localization for
shapes in the MR data into account, features related to the accurate biopsy is a next step. Techniques for MRI-directed
shape of the lesion are calculated in world coordinates, rather biopsy are being developed and evaluated.312 33 The 3D nature
than in voxel coordinates. Lesion sharpness is calculated, of the MR data may allow useful complementary informa-
however, using a 3 X 3 X 3 Sobel filter, which does not ac- tion to visualize the size and shape of the lesion as well as its
count for the anisotropic voxel shape. An intuitive approach location relative to the nipple position and pectoralis muscle
would be to resample the MR voxels into a uniform coordi- (Fig. 3).
nate grid by linear interpolation. Such linear modeling of the
discontinuity at the edges of the lesions may, however, lead V. CONCLUSIONS
to underestimation of sharp lesion margins, thus compromis- A technique aimed at computer-aided diagnosis of suspect
ing the benefit of the correction. In addition, the approach lesions in contrast-enhanced MRI of the breast has been de-
does not take other effects of deviating slice thickness into veloped to increase the objectivity of breast cancer diagnosis.
account, such as differences in partial volume effect. These Initial results of analysis of spatial features in 3D indicate
aspects are topic of future study. good accuracy of classification (A,= 0.96), and higher per-
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Computerized Analysis of Lesions in
US Images of the Breast1

Maryellen L. Giger, PhD, Hania AI-Hallaq, BS, Zhimin Huo, PhD, Catherine Moran, BA

Dulcy E. Wolverton, MD, Chun Wai Chan, MS, Weiming Zhong, MS

Breast cancer is a leading cause of death in women, causing
Rationale and Objectives. Breast sonography is not rou- a siae 400dah e er() amgah

tiney ued o dstinuis beignfrommalgnat slidan estimated 44,000 deaths per year (1). Mammographytinely used to distinguish benign from malignant solid is the most effective method for early detection of breast

masses because of considerable overlap in their sono-

graphic appearances. The purpose of this study was to cancer, and periodic screening of asymptomatic women

investigate the computerized analyses of breast lesions in reduces the mortality rate (2-4). Many breast cancers are

ultrasonographic (US) images in order to ultimately aid in detected, and these patients are referred for biopsy on the
the task of discriminating between malignant and benign basis of a radiographically observed mass lesion or cluster
lesions. of microcalcifications. General rules for the differentia-

Materials and Methods. Features related to lesion margin, tion of benign from malignant mammographically identi-
shape, homogeneity (texture), and posterior acoustic at- fied breast lesions exist (5,6), but considerable misclassi-
tenuation pattern in US images of the breast were extracted fication of these lesions still occurs. On average, less than
and calculated. The study database contained 184 digitized 30% of masses referred for surgical breast biopsy are ac-
US images from 58 patients with 78 lesions. Benign lesions tually malignant (7).
were confirmed at biopsy or cyst aspiration or with image Breast sonography is an important adjunct to diagnos-
interpretation alone; malignant lesions were confirmed at
biopsy. Performance of the various individual features and tic mammography, and it is typically performed on pal-

output from linear discriminant analysis in distinguishing pable and/or mammographically identified masses to de-
benign from malignant lesions was studied by using re- termine their cystic or solid nature. The accuracy rate of
ceiver operating characteristic (ROC) analysis. ultrasonography (US) has been reported to be 96%-] 00%

Results. At ROC analysis, the feature characterizing the in the diagnosis of simple benign cysts (8), and masses so
margin yielded A values (area under the ROC curve) of characterized do not require further evaluation. US has
0.85 and 0.75 in distinguishing between benign and malig- not been used for screening purposes, however, because

nant lesions for the entire database and for an "equivocal" of relatively high false-negative and false-positive rates.
database, respectively. The equivocal database contained Even so, US is being evaluated as a potential screening
lesions that had been proved to be benign or malignant at
cyst aspiration or biopsy. Linear discriminant analysis
round-robin runs yielded A values of 0.94 and 0.87 in dis-
tinguishing benign from malignant lesions for the entire
database and for the equivocal database, respectively. Acad Radiol 1999; 6:665-674
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some centers are successful at visually distinguishing be- expert mammographers in differentiating benign from
nign from malignant masses by using US, but physicians malignant lesions. In addition, Swett and Miller (19)
at most facilities are unable to rely on breast US to avoid developed an expert system to provide both visual and
biopsy because of the considerable overlap in the sono- cognitive feedback to radiologists by using a critiquing
graphic appearances of these masses, approach combined with an expert system. At the Uni-

With the advent of modern, high-frequency transducers versity of Chicago, we have shown that computerized
that have improved spatial and contrast resolution, how- analysis of mass lesions (21,23) and clustered micro-

ever, several sonographic features have emerged as po- calcifications (22,24) as shown on digitized mammo-
tential indicators of malignancy and others as potential grams yields performance rates similar to those of expert
indicators of benign masses (10,11). Benign features in- mammographers and significantly better (P < .05) than
clude hyperechogenicity, ellipsoid shape, mild lobula- those of average radiologists in distinguishing malignant
tion, and a thin, echogenic pseudocapsule. Malignant from benign lesions.

features include spiculation, angular margins, marked US is a digital modality that is amenable to application

hypoechogenicity, posterior acoustic shadowing, and of computer-aided diagnosis techniques that could ulti-
a depth-to-width ratio greater than 0.8. mately be used in a real-time fashion (at the time of ex-

Stavros et al (12) used various features to characterize amination) to improve diagnostic accuracy. Given that
masses as being either benign, indeterminate, or malig- sonographic interpretation is a subjective process, how-
nant. Their classification scheme had a sensitivity of ever, and that criteria have been developed that may al-
98.4% and a negative predictive value of 99.5%. The low for differentiation of benign from malignant solid
sonographic evaluation described by these investigators, breast masses, it is reasonable to assume that computer-
however, is much more extensive and complex than that aided diagnosis techniques applied to sonographic im-
usually performed at most breast-imaging centers. US ages would also improve radiologists' performance, par-

is a notoriously operator-dependent modality, and until ticularly when this method is combined with correspond-
these encouraging results are corroborated through addi- ing mammographic data (25). Recently, Garra et al (26)
tional studies by other investigators, it is unclear how showed promising results with the use of computer-ex-

widely applicable or reliable such sonographic classifica- tracted features derived from co-occurrence matrices of
tion schemes truly are. images of breast lesions.

Computer-aided techniques have been applied to color In this study, we attempted to determine if computer
Doppler US evaluation of breast masses with promising analysis of breast lesions in gray-scale, US images could
results (13). Color Doppler imaging is a technique that be used to discriminate malignant from benign lesions.
focuses on the vascularity of lesions. Not all sonograph-
ically visible cancers have demonstrable neovascularity, M A , ETOD
however, and benign lesions can be vascular. Therefore,
the sensitivity and specificity of this technique are inher- Database

ently somewhat limited. These limitations have been Masses were viewed sonographically by filming repre-
demonstrated in power Doppler imaging of solid breast sentative images in orthogonal planes. The US examina-
masses (14). tions were performed with an Ultramark 9 with High

Comprehensive summaries of investigations regarding Definition Imaging (HDI) from Advanced Technology
mammographic computer-aided diagnosis have been Laboratories (Bothell, Wash) with a high-frequency, 7.5-
published (15,16). During the 1960s and 1970s, several MHz, electronically focused, near-field imaging probe.
investigators attempted to analyze mammographic abnor- The static images of lesions that did not contain overlaid
malities by using computers (17-24). These investigators cursors or color Doppler signals were used in this study.
demonstrated the potential capability of computers in the The US film images were retrospectively collected and
detection of mammographic abnormalities. Gale et al then digitized with a laser film scanner (KFDR-S; Konica,
(17) and Getty et al (18) both reported on computer- Tokyo, Japan) with a scanner pixel size of 0.1 mm and 10-
based classifiers that take diagnostically relevant features bit quantization. Each multiformat film contained only one
obtained from radiologists' readings of breast images US image. Film digitization is not the optimal approach to
as input. Getty et al found that with use of this classifier, acquiring digital US data, but it was the only one available
community radiologists performed as well as unaided for this initial study.
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The 58 patients in the study ranged in age from 35 To quantify the lesion margin characteristics, a gradient

to 89 years (mean age, 53 years). They had 78 masses as analysis was performed along a computer-expanded margin

shown on 184 digitized US images. Benign lesions were of the lesion. In this analysis, the manually extracted margin

confirmed at biopsy or cyst aspiration or with image in- was first expanded by using morphologic filtering. Next,
terpretation alone, whereas malignant lesions were con- this region was processed by using a Sobel filter to obtain

firmed at biopsy. Of the total 184 images, 144 were from the gradient and its direction at each pixel. The normalized

43 patients with 62 benign lesions, and 40 were from 15 radial gradient was then calculated to quantify the margin

patients with 16 malignant lesions. Benign lesions in- sharpness and degree of irregularity (shape) (21,27). The
cluded simple cysts, complex cysts, and solid masses. normalized radial gradient (21,27) is given by the equation

Of the 62 benign lesions, 19 (all solid) were proved at

biopsy, five (1 solid lesion and four complex cysts) were

proved at cyst aspiration, and 38 (four solid lesions and y cos(PpD- + D2

34 cysts) were deemed to be benign on the basis of visual normalized radial gradient = P ... gin

interpretation of the US images alone. All 16 malignant PE margin

lesions were proved at biopsy.

Lesions were further subcategorized into an "equivo-
cal" category on the basis of the necessity of performing where D. is the gradient along the x axis, Dy is the gradient

an interventional procedure to determine their status. The along the y axis, and (p is the angle between the gradient

24 benign lesions that were proved at biopsy or cyst aspi- vector and the radial gradient. A lower value for the nor-

ration and the 16 malignant lesions made up the equivocal malized radial gradient indicates a less distinct margin.

database (total, 40 lesions). The purpose of this subcate- The geometric measure of shape in terms of a short-

gorization was to determine the ability of the computer to-long axis ratio for each lesion was determined by us-

features to distinguish benign from malignant lesions that ing the image data along the margin. Note here that the

required an interventional procedure (cyst aspiration or short-to-long axis ratio corresponds to a depth-to-width

biopsy) for definitive diagnosis. ratio to extract the orientation of the long axis. Cysts tend

to be ellipsoid, thereby resulting in a depth-to-width ratio

Manual Lesion Segmentation and Region-of- of much less than 1, whereas malignant lesions tend to

Interest Selection have a vertical or round axial orientation (28).

Once digitized, the US images were displayed on an Texture can be described through spatial relationships

IBM monitor, and a breast-imaging radiologist (D.E.W.) between image pixels by using changes in the intensity

outlined the approximate margins of each lesion. Figure 1 patterns and gray levels. Texture characteristics of the

shows US images of breast lesions with outlined margins, homogeneity within the lesion were determined by using

Regions of interest (ROIs) of 32 x 32 pixels were selected a measure of coarseness (29). The texture measure of

from regions within and around the lesions. Features were coarseness (local uniformity) is given by the equation

calculated on the basis of the manually extracted lesion

margin or the 32 x 32-pixel ROI. Gh -l
coarseness =[ps(i)]

Automated Feature Extraction

Four types of lesion characteristics were investigated: where Gh is the highest gray-level value in the ROI and p,

margin, shape, homogeneity (texture), and posterior is the probability of occurrence for gray level i. Thus, if N
acoustic attenuation. Table 1 lists these characteristics is the width of the ROI (N = 32), d is the neighboring size

and their relationships to benign and malignant lesions. (half the operating kernel size W), the ith entry of s is
The lesion characteristics were quantified by using given by

various computer-extracted features, and Table 2 lists the

computer-extracted features used in distinguishing malig-
nant from benign lesions. Features were calculated either s(i) =- li-Ail forie{NilifNi t•0

along or within the lesion margin or within the 32 x 32- 0 otherwise
pixel ROI (placed within the central portion of or poste-

rior to the lesion).
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a. b.

C. d.
Figure 1. (a) US image of a simple cyst. (b) US image of a complex cyst. (c) US image of a benign solid lesion. (d) US image of a ma-
lignant lesion, along with radiologist-drawn lesion margin.

Thus, a lower value of coarseness corresponds to a finer

where {N.} is the set of pixels having gray level i, visual texture.

The computerized assessment of posterior acoustic

A = -7 attenuation or enhancement associated with different le-
A - t.' + 1,3 + q) sions was determined in two ways: (a) by comparing theW- l /=, I ,

gray-level values within the lesion with those posterior
to that lesion and (b) by comparing the gray-level values

W = (2d + 1)2 (d = 3). posterior to the lesion with those in adjacent tissue at the

same depth. These calculations were performed to quantify
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Table 1
Lesion Characteristics and Their Relationship to Benign and Malignant Lesions

Characteristic Benign (Cystic or Solid) Malignant

Lesion margin Smooth borders Angular margins, spiculation
Lesion shape Ellipsoid, mildly lobulated Irregular; depth-to-width ratio, >0.8
Texture within lesion Anechoic, hyperechoic, reverberation artifacts Hypoechoic
Posterior acoustic attenuation Posterior enhancement Posterior shadowing

the amount of any posterior acoustic shadowing or enhance- index (TPF, A z), which is the portion of the area under the
ment. For example, benign lesions are often associated with ROC curve that lies above the true-positive fraction di-
posterior enhancement, whereas malignant lesions are often vided by the constant (1 - TPF0) (32). Both A and partial
associated with posterior shadowing. Simple cysts that are A values were calculated for the entire database and for
anechoic produce less attenuation of the US waves than sur- the equivocal database.
rounding parenchyma produces and, thereby, cause relative

hyperechogenicity posterior to the lesion. In this analysis,
32 x 32-pixel ROIs were placed within the lesion, posterior
to the lesion, and in the adjacent tissue at the same depth, The A values for the various computer-extracted US fea-
and the differences in average gray levels were then calcu- tures ranged from 0.54 to 0.85 in distinguishing benign
lated to quantify the posterior acoustic attenuation. from malignant lesions. Table 2 provides these values for

The feature value for a given lesion was obtained by av- both the entire database and the equivocal database. Be-
eraging that feature value over all views of the lesion. Each cause missing a cancer is more important clinically than
lesion had from two to five images available from one clini- performing an interventional procedure for a benign lesion,
cal examination. we used the partial area index to quantify performance

Linear discriminant analysis (LDA) was used to merge of the features at a high-sensitivity level (32). Table 2
the four individual, computer-extracted features into a provides these TPFA.' values for the entire database and
single index related to an estimate for the likelihood of the equivocal database.
malignancy. In LDA, the discriminant function is formu- When the first four features (listed in Table 2) were used,
lated by using a linear combination of the individual fea- LDA consistency runs yielded Az values of 0.95 and 0.93 in
tures (30). Both consistency and round-robin runs were distinguishing benign from malignant lesions for the en-
performed. In round-robin analysis, the discriminant tire database and the equivocal database, respectively, and
function is trained on all but one case and is then tested the round-robin runs yielded A values of 0.94 and 0.87 in
on that remaining case; this process is repeated until all distinguishing benign from malignant lesions for the entire
cases have been individually tested, database and the equivocal database, respectively (Table 2).

When the second posterior acoustic attenuation feature was

Evaluation used, LDA consistency runs yielded A values of 0.94 and
Receiver operating characteristic (ROC) analysis (31) 0.93 in distinguishing benign from malignant lesions for the

was used to evaluate (by case, not by image) the perfor- entire database and the equivocal database, respectively,
mance of the individual computer-extracted features in dis- and the round-robin runs yielded A values of 0.92 and 0.86
tinguishing benign from malignant lesions. The decision in distinguishing benign from malignant lesions for the en-
variable for the ROC analysis was each individual feature, tire database and the equivocal database, respectively
The area under the ROC curve (A) was used as an indicator (Table 2).
of performance. Specificity at high sensitivity is relevant
clinically, because the cost of missing a cancer is greater DC S
than the cost of performing an interventional procedure for
a benign lesion. Therefore, we also calculated the perfor- Figure 2 shows cluster plots of the coarseness and mar-
mance of the features in the high-sensitivity range (true- gin features for malignant and benign lesions in the entire
positive fraction [TPF0], >0.90) by using the partial area database and the equivocal database. Figure 3 shows clus-
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Table 2
Computer-extracted Features Used to Quantify Lesion Characteristics

Region for Entire Database* Equivocal Databaset
Analysis Database A, 0.90A,, A, 0 .90A,.

Lesion margin
1. Normalized radial gradient Margin 0.85 0.46 0.75 0.28

Shape
2. Depth-to-width ratio Margin 0.67 0.20 0.75 0.29

Texture within the lesion
3. Coarseness ROI 0.54 0.12 0.67 0.14

Posterior acoustic attentuation
4. Difference in gray level between "within lesion"

and posterior to lesion ROls 0.77 0.29 0.72 0.27
5. Difference in gray level between "posterior to

lesion" and adjacent tissue at same depth ROls 0.83 0.35 0.72 0.17
Linear discriminant analysis (features 1, 2, 3, and 4)

Consistency analysis 0.95 0.78 0.93 0.70
Round-robin analysis 0.94 0.76 0.87 0.56

Linear discriminant analysis (features 1, 2, 3, and 5)
Consistency analysis 0.94 0.68 0.93 0.58
Round-robin analysis 0.92 0.59 0.86 0.38

Note.-Performance is given in terms of A, and partial Afor the entire database and the "equivocal" database in distinguishing malig-
nant from benign lesions.

*n = 78 cases.

tn = 40 cases.
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a. b.
Figure 2. Cluster plots indicate feature values for margin and texture. (a) Values for the entire database. (b) Values for the equivocal
database.

ter plots of the depth-to-width ratio and the (first) posterior distinct margins and more posterior shadowing than be-
acoustic attenuation feature for malignant and benign le- nign lesions as documented by using visual US criterion
sions in the entire database and the equivocal database. As (10,12,26,28). It is interesting that many benign lesions
these figures show, malignant lesions tend to exhibit less not in the equivocal database of this study had a very
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Figure 3. Cluster plots indicate feature values for lesion shape and posterior acoustic attenuation. (a) Values for the entire database.
(b) Values for the equivocal database.
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Figure 4. Performance of the computer-extracted features in distinguishing malignant from benign lesions for the entire database and
for the equivocal database. (a) Margin. (b) Posterior acoustic attenuation.

"fine" texture (a low coarseness feature), because many the entire database and for the equivocal database. The
were cysts and anechoic. In contrast, the benign solid ROC curves are lower for the equivocal database than for
lesions tended to have a coarse texture. the entire database, thereby indicating that as for radiolo-

Figure 4 shows performance in terms of ROC curves gists, benign lesions in the equivocal database are more
for the features characterizing margin and acoustic attenu- difficult to distinguish from malignant lesions. Figure 5,
ation in distinguishing malignant from benign lesions for which shows histograms of the feature values (for malig-
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8 tic attenuation.

(U

"0 ing our digital US database, but it was the only one avail-
0 able for this study. Even with the limited image quality ob-
E tained from digitization of the multiformat film US images,

2 however, we could observe computer features capable of

distinguishing malignant from benign lesions. Computer-

0 lized analysis of direct digital US data is expected to im-
.350 .300 -250 -200 150 .100 .5 0 0 50 100 150 200 prove the discriminatory value of the various features, espe-

Posterior Acoustic Attenuation cially for texture features of the lesion interior. Our future

C. database collection will include direct digital data.

The purpose of this study was to determine if computer-
nant lesions, benign lesions in the equivocal database, and extracted features on US images of breast lesions have the
the remaining benign lesions) for margin, texture, and pos- potential to discriminate malignant from benign lesions and,

terior acoustic attenuation, further illustrates this point. As thus, ultimately help to reduce the number of unnecessary
shown, malignant lesions tend to exhibit a coarse texture, biopsies performed. This potential has been shown even

less distinct margins, and posterior shadowing. There is, though the number of lesions in the database is small. In
however, substantial overlap in the features of malignant addition, the features chosen for this study agree well with

and features of benign lesions in the equivocal database. those used by radiologists when interpreting breast US im-
Table 2 and Figure 6 show perfomance of the linear ages. It should be noted, however, that the computer-ex-

discriminant function in distinguishing malignant from tracted features were obtained from radiologist-drawn mar-
benign lesions for the entire database and the equivocal gins. In the future, the subjectiveness of human-drawn mar-
database. Of note are the partial A values and the shape gins will be eliminated with use of computer segmentation.
of the ROC curves. Extraction from the fitted ROC US images of the breast can yield information on the
curves for the equivocal database (in which all lesions interior of the lesion (homogeneity), as well as on the in-

underwent a clinical procedure [cyst aspiration or bi- terface of the lesion with its surroundings. This is why
opsy]) indicates that at a high sensitivity level (90%) US is used to distinguish solid from cystic lesions. Gradi-
for malignant cases, 30% of the benign cases were classi- ent analysis of the margin yields information on the lesion
fied as benign and, thus, could potentially have avoided margin, including its sharpness and shape. Geometric fea-
biopsy. Therefore, combined use of the four computer- tures relating to the depth-to-width ratio of the lesion are

extracted features yields superior performance. also useful, because even though many solid lesions may
Film digitization was not the optimal approach to acquir- be ellipsoid, the orientation of the ellipse regarding the
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1.0 . .. malignant at either cyst aspiration or biopsy. LDA con-

sistency runs yielded A values of 0.95 and 0.93 in distin-

guishing benign from malignant lesions for the entire data-
I base and the equivocal database, respectively, and the

round-robin runs yielded A values of 0.94 and 0.87 in

distinguishing benign from malignant lesions for the en-

tire database and the equivocal database, respectively.

Our results indicate that computerized analysis of US im-
• 0.5 ;

ages has the potential to increase the specificity of breast
sonography. These promising results warrant further de-

E D (A,=.94) velopment and testing on a large, direct-digital database.
S= " Equivocal database (A,=0.87)

Linear Discriminant Analysis
Round-Robin Evaluation The authors thank Fred Winsberg, MD, for contributing

to the database and Ulrich Bick, MD, Jason Rubenstein,

0.0 I Michael Chinander, and Samuel Armato III, PhD, for use-
0.0 0.5 1.0 ful discussions.
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